STAFF REPORT VOLUME I

REVISION OF THE CLEAN WATER ACT SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS

APRIL 2002

DIVISION OF WATER QUALITY

STATE WATER RESOURCES CONTROL BOARD

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

STATE WATER RESOURCES CONTROL BOARD DIVISION OF WATER QUALITY

STAFF REPORT

REVISION OF THE CLEAN WATER ACT SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS

VOLUME I

Preface

The State Water Resources Control Board (SWRCB) is required to review, make changes as necessary, and submit the Clean Water Act section 303(d) list to the U.S. Environmental Protection Agency (USEPA) by October 1, 2002.

This document presents the proposals for additions, deletions, and changes to the 1998 California 303(d) List as well as recommendations for Total Maximum Daily Load (TMDL) priorities, development of a Watch List, and development of a TMDLs Completed List. The report provides a summary of the recommended list changes and the SWRCB staff analysis of the data and information as well as the Regional Water Quality Control Board (RWQCB) recommendations.

This Staff Report has three parts: (1) Volume I which contains the listing methodology and a summary of the proposed additions, deletions, changes, and priorities; (2) Volume II which contains summaries of the proposals for the North Coast, San Francisco Bay, Central Coast, and Los Angeles Regional Water Quality Control Boards (RWQCBs); and (3) Volume III which contains summaries of the proposals for the Central Valley, Lahontan, Colorado River Basin, Santa Ana, and San Diego RWQCBs. Each proposal is presented in a water body fact sheet.

The SWRCB will accept testimony at northern and southern California hearings on the proposed changes to the 1998 section 303(d) list. After responses to comments are developed, the SWRCB will consider approval of the 2002 section 303(d) list submittal. Once approved by the SWRCB, the list and supporting information will be submitted to USEPA.

Table of Contents

PREFACE]
TABLE OF CONTENTS	II
LIST OF ABBREVIATIONS	II
INTRODUCTION	1
BACKGROUND	1
METHODOLOGY USED TO DEVELOP THE LIST	
ASSUMPTIONS	2
SOLICITATION	
RWQCB ANALYSIS AND RECOMMENDATIONS	
SWRCB REVIEW OF RWQCB RECOMMENDATIONS	
PUBLIC PARTICIPATION CONDUCTED BY THE SWRCB	
ADDITIONS, DELETIONS, AND CHANGES TO THE SECTION 303(D) LIST	
ADDITIONS, DELETIONS, AND CHANGES TO THE SECTION 303(D) EIST	
WATCH LIST	6
PRIORITIES AND SCHEDULES	
TMDLS COMPLETED LIST	
ADMINISTRATIVE RECORD	
TABLE 1: PROPOSED ADDITIONS TO THE SECTION 303(D) LIST	Additions-1
TABLE 2: PROPOSED DELETIONS FROM THE 1998 SECTION 303(D) LIST	DELETIONS-1
TABLE 3: CHANGES PROPOSED FOR THE 1998 SECTION 303(D) LIST	
TABLE 4: PROPOSED WATCH LIST.	
TABLE 5: PROPOSED PRIORITIES AND COMPLETION DATES FOR THE 2002 SECTION 303(D) LIST TABLE 6: TMDLS COMPLETED LIST	PRIORITIES-1
APPENDIX: 1998 CALIFORNIA 303(D) LIST AND TMDL PRIORITY SCHEDULE	APPENDIX-1

List of Abbreviations

BMP Best Management Practice

BP Basin Plan

BPTCP Bay Protection and Toxic Cleanup Program

BU Beneficial Use

C Celsius

CalEPA California Environmental Protection Agency

CAO Cleanup and Abatement Order

CCAMP Central Coast Ambient Monitoring Program

CCC Criteria Continuous Concentration
CCR California Code of Regulations
CEQA California Environmental Quality Act

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

CFCP Coastal Fish Contamination Program

CFR Code of Federal Regulations

CHEM A Pesticides Aldrin, dieldrin, chlordane, endrin, heptachlor epoxide,

hexachlorocyclohexane (including lindane), endosulfan, and toxaphene

CMC Criteria Maximum Concentration
CSO Combined Sewer Overflow

CWA Clean Water Act DCE Dichloroethylene

DDE Dichlorodiphenyldichloroethylene
DDT Dichlorodiphenyltrichloroethane
DFG Department of Fish and Game
DHS Department of Health Services
DPR Department of Pesticide Regulation
EBMUD East Bay Municipal Utilities District

EDL Elevated Data Level

EIR Environmental Impact Report

EQIP Environmental Quality Incentives Program

ERL Effects Range Low ERM Effects Range Median

FDA U.S. Food and Drug Administration GeoWBS Geographic Water Body System

GROUP A Pesticides Aldrin, dieldrin, chlordane, endrin, heptachlor epoxide,

hexachlorocyclohexane (including lindane), endosulfan, and toxaphene

GVWTP Grass Valley Wastewater Treatment Plant

HCH hexachlorocyclohexane

HU Hydrologic Unit

IR Installation Restoration

kg kilogram(s)

MBNMP Morro Bay National Monitoring Program

MCL Maximum Contaminant Level

mg/kg milligrams per kilogram (parts per million)
mg/l milligrams per liter (parts per million)

MPN Most Probable Number

MTBE Methyl t-butyl ether

MTRL Maximum Tissue Residue Level

MWAT Maximum Weekly Average Temperature MWMT Maximum Weekly Maximum Temperature

NAS National Academy of Sciences

ng/l nanograms per liter (parts per trillion)
NMFS National Marine Fisheries Service

NOAA National Oceanic and Atmospheric Administration NPDES National Pollutant Discharge Elimination System

NPS Nonpoint Source

NRCS Natural Resources Conservation Service

NWRAQ National Water Recommended Ambient Quality

OAL Office of Administrative Law

OEHHA Office of Environmental Health Hazard Assessment

OP Organophosphorous Pesticides PAH polynuclear aromatic hydrocarbon

PCB polychlorinated biphenyl
PCE tetrachloroethylene
PEL Probable Effects Level
PMP Pesticide Management Plan
POTW Publicly Owned Treatment Works
QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Procedure Plan

RB Regional Board

RBI Relative Benthic Index

RMP Regional Monitoring Program

RWQCB Regional Water Quality Control Board

SBCPHD Santa Barbara County Public Health Department SCRWA South County Regional Wastewater Authority

SFEI San Francisco Estuary Institute
SMWP State Mussel Watch Program
SSO Site Specific Objective

SWAMP Surface Water Ambient Monitoring Program
SWPPP Storm Water Pollution Prevention Plan
SWRCB State Water Resources Control Board
SWRP Sacramento River Watershed Program

TBT Tributyltin

TCE Tetrichloroethylene TDS Total Dissolved Solids

THS Toxic Hot Spot

TIE Toxicity Identification Evaluation
TMDL Total Maximum Daily Load
TPH Total Petroleum Hydrocarbon

TSMP Toxic Substance Monitoring Program

TSS Total Suspended Solids

TU Toxic Unit

UCD University of California Davis

USDHHS-ATSDR Agency for Toxic Substance and Disease Registry

USEPA U.S. Environmental Protection Agency

USFS U.S. Forest Service

USFWS U.S. Fish and Wildlife Service

USGS U.S. Geological Survey VOC Volatile organic carbon

WDR Waste Discharge Requirement

WER Water Effect Ratio

WL Watch List

WMI Watershed Management Initiative

WQ Water Quality

WQO Water Quality Objective

WR Water Rights

WWTP Waste Water Treatment Plant

Staff Report by the Division of Water Quality State Water Resources Control Board

REVISION OF THE CLEAN WATER ACT SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS

Volume I

Introduction

The State of California is required under Clean Water Act (CWA) section 303(d) and federal regulations (40 CFR 130) to prepare a list of and set priorities for water quality limited segments still requiring Total Maximum Daily Loads (TMDLs). The section 303(d) list was last revised in 1998. Federal regulations require the section 303(d) list to be updated every two years. The U.S. Environmental Protection Agency (USEPA) has extended the date for submission of the updated section 303(d) list to October 1, 2002.

The purpose of this Staff Report is to present proposals for revision of the State's section 303(d) list and to present recommendations for TMDL priorities, development of a Watch List, and development of a TMDLs Completed List.

Background

CWA section 303(d) requires states to identify waters that do not meet applicable water quality standards with technology-based controls alone. As defined in the CWA and federal regulations, water quality standards include the designated uses of a water body, the adopted water quality criteria, and the State's antidegradation policy. As defined in the Porter-Cologne Water Quality Control Act, water quality standards are beneficial uses to be made of a water body, the established water quality objectives (both narrative and numeric), and the State's nondegradation policy (SWRCB Resolution No. 68-16).

The section 303(d) list must include a description of the pollutants causing the violation of water quality standards (40 CFR 130.7(b)(iii)(4)) and a priority ranking of the water quality limited segments for the purpose of development of TMDLs. A TMDL is the sum of the individual wasteload allocations for point sources and load allocations for nonpoint sources and natural background, tributaries, or adjacent segments. A water quality limited segment is "any segment [of a water body] where it is known that water quality does not meet applicable water quality standards, and/or is not expected to meet applicable water

quality standards, even after application of technology-based effluent limitations required by CWA Sections 301(b) or 306."

The states are required to review in even-numbered years the section 303(d) list, make changes as necessary, and submit the list to USEPA for approval. Federal regulation exempted the requirement for the list to be submitted in 2000, and extended the date for submission of the next section 303(d) list to October 1, 2002.

The SWRCB is in the process of developing a Water Quality Control Policy for guidance on the development of the CWA section 303(d) list of water quality limited segments. The Policy will address the solicitation of all readily available data and information, evaluation of the data and information, an approach for considering the weight of evidence for identifying water quality limited segments, listing and delisting factors for determining attainment of standards or beneficial uses, priority setting, and other topics. This policy, once developed, will be used to develop all future lists.

Methodology Used to Develop the List

The SWRCB is required to provide USEPA a description of the methodology used to develop the section 303(d) list (40 CFR 130.7(b)(6)(i)). This section presents the SWRCB methodology for developing the 2002 section 303(d) list.

The SWRCB and RWQCB staff have evaluated each addition, deletion, and change to the section 303(d) based on all the data and information available for each water body and pollutant. These recommendations are based upon "all existing and readily available data and information" (40 CFR 130.7(b)(5)). In developing the recommendations, the SWRCB staff has used the recommendations and analysis of the RWQCBs as a basis of its analysis. Each recommendation to the SWRCB is an independent assessment of each water body and pollutant. SWRCB staff took into account both general considerations (e.g., what factors the SWRCB should consider) and facts relating to individual water bodies and pollutants (e.g., how the RWQCBs looked at certain data or the significance of a particular water in the region).

Assumptions

In developing the SWRCB staff recommendations it was assumed that:

- 1. The 1998 section 303(d) list (Appendix) forms the basis for the 2002 list submittal.
- 2. RWQCB recommendations to change existing listings would be considered by the SWRCB.

3. If there is insufficient available data and information to list, water bodies will be placed on a "Watch List". The Watch List is not a recognized part of the section 303(d) list but it will be sent to USEPA.

Solicitation

Beginning March 14, 2001, the RWQCBs solicited other State agencies, Federal agencies, and the public for all readily available data and information to support the update of the section 303(d) list. The solicitation was closed on May 15, 2001.

RWQCB Analysis and Recommendations

The RWQCBs assembled and evaluated all existing and readily available water quality-related data and information to develop the list (40 CFR 130.7(b)(5)) and provided an assessment and documentation to list or not to list a state's waters (40 CFR 130.7(b)(6)). RWQCB staff prepared draft staff reports, fact sheets (in many cases), and summaries of the additions, deletions and changes to section 303(d) list. Three RWQCBs prepared Watch Lists; one RWQCB described constituents/water bodies of potential concern.

RWQCB documents were made available for public comment. Each RWQCB held public Workshops and/or Board meetings to consider the recommendations for revising the section 303(d) list. Many of the RWQCBs received substantial public comments (including comments from USEPA); responded to the comments; and revised their reports/lists based on public comments or submitted data.

The RWQCBs assigned priorities of high, medium, or low for completion of TMDLs for the pollutants or stressors identified in their proposals for the section 303(d) list. Dates for completing the TMDLs were assigned.

Each of the RWQCBs submitted staff reports and lists to SWRCB, along with copies of public submittals, data and information, and documents referenced in the submittal. The information about the section 303(d) list was also entered into the Geographical Water Body System (GeoWBS) by RWQCB and SWRCB staff.

SWRCB Review of RWQCB Recommendations

The SWRCB staff reviewed the RWQCB recommendations and either concurred with the recommendation or identified the reasons for not concurring. SWRCB staff developed fact sheets for each proposal to add water bodies, delete water bodies, and change the section 303(d) list. Fact sheets were not prepared for the waters that were recommended by the RWQCBs to be placed on the Watch List. The data and information used to support the placement of these waters on the Watch List are described in the RWQCB staff reports.

Fact sheets were also prepared for many of the waters where (1) data and information were reviewed but no action was taken or (2) the listing was not changed even though pertinent data and information were submitted.

The record and fact sheets contain the rationale for decisions to use or not to use any existing and readily available data and information (40 CFR 130.7(b)(6)(iii)). The SWRCB staff also identified and set priorities for the listed water quality limited segments still requiring TMDLs (40 CFR 130.7(b)).

SWRCB staff has reviewed each RWQCB proposal on a case-by-case basis. Staff identified and/or assessed the following factors for each water body-pollutant combination:

- 1. Watershed/Water Body
- 2. Stressor (pollutant)/Medium (Water, sediment, or tissue data)/Beneficial Use
- 3. Assessment of data quality. Extent to which data quality requirements are met.
- 4. Linkage between measurements and beneficial use or standard.
- 5. Utility of measure for judging if standards or uses are not attained.
- 6. Water Body-specific information.
- 7. Data used to assess water quality.
- 8. Spatial representation.
- 9. Temporal representation.
- 10. Data type.
- 11. Use of standard method.
- 12. Source of pollutant.
- 13. Availability of an alternative enforceable program.

For each of these factors, SWRCB staff prepared a written description of how the RWQCBs addressed the water body. Each recommendation to the SWRCB was developed based on strength, value, and believability of all the data and information available. Staff considered all existing readily available data and information in making recommendations.

SWRCB management reviewed the recommendations for additions to the list, deletions from the list, waters excluded from the list, waters to be placed on the watch list, and priorities.

In Volumes II and III of the Staff Report, the SWRCB staff have presented for each RWQCB: (1) a summary of the section 303(d) recommendations, (2) water body fact sheets (for each decision) outlining the SWRCB evaluation of the available data and information, and (3) a reference listing of all the data and information used.

The SWRCB is required by the CWA and federal regulations to provide EPA the following information as part of the section 303(d) list:

- Water quality limited segments (40 CFR 130.7(b)(1))
- Pollutants (40 CFR 130.7(b)(4))
- Priority ranking (40 CFR 130.7(b)(4))
- Identification of waters targeted for TMDL development in the next two years (40 CFR 130.7(b)(4))

The SWRCB shall, in addition, provide:

- Region
- Type of water body
- Calwater watershed (instead of hydrologic unit)
- Potential source(s) of pollutant, if known
- A preliminary estimate of the size (area or length) of water body affected

Please note: For the 1998 303(d) list, the "size affected" was an estimated value. Since 1998 there has been an ongoing effort by SWRCB and RWQCB staff to more clearly represent all 303(d)-listed waters spatially. The "size affected" values for the 2002 303(d) list submittal shall be changed to reflect more precise measurements obtained from the GIS database (GeoWBS). Therefore, many of the size affected values on the 2002 303(d) list will ultimately differ from those shown on the 1998 303(d) list (Appendix). In addition, due to our lack of understanding of the full impact of a pollutant until TMDLs are developed, the values for "size affected" may not reflect the true area of impact.

Setting Priorities and Schedules for Completing TMDLs

A priority ranking is required for listed waters to guide TMDL planning for the next two years (40 CFR 130.7(b)(4)). The schedule for TMDL development is based on the budgeted staff and contract resources available to the SWRCB and RWQCBs. TMDLs were ranked into high, medium, and low priority categories based on:

- Water body significance (such as importance and extent of beneficial uses, threatened and endangered species concerns, and size of water body).
- Degree that water quality standards are not met or beneficial uses are not attained or threatened (such as the severity of the pollution or number of pollutants/stressors of concern) (40 CFR 130.7(b)(4)).
- Availability of funding and information to address the water quality problem
- Overall need for an adequate pace of TMDL development for all listed waters over the next two years.

Those waters given a high priority are targeted for TMDL completion in the next two years (by 2004). Medium and low priorities will be completed after 2004.

Public Participation Conducted by the SWRCB

The SWRCB has scheduled a public hearing to receive comment on the proposed section 303(d) list. The first part of the hearing will be held in northern California (on May 23 and 24, 2002) and the second part will be held in southern California (May 30, 2002). The SWRCB staff will respond in writing to all comments received.

Additions, Deletions, and Changes to the Section 303(d) List

The basis for the 2002 Section 303(d) list is the 1998 list (Appendix). The SWRCB staff proposes to add 195 water quality limited segments with 303 pollutants or stressors to the section 303(d) list (Table 1). SWRCB staff also proposes that 70 water bodies be removed from the section 303(d) list (Table 2). Several changes to the listings are proposed (Table 3).

Watch List

Many of the RWQCBs identified waters where minimal, contradictory, or anecdotal information suggests standards are not met but either (1) the available data or information are inadequate to draw a conclusion, or (2) a regulatory program is in place to control the pollutant but data are not available to demonstrate that the program is successful. In many cases, the data or information is not of adequate quality and quantity to support a listing and subsequent TMDL regulatory process. In these cases, a finding is warranted that water quality appears impacted and more information must be collected to resolve whether standards and beneficial uses are attained. The waters on the Watch List are of high priority for SWRCB and RWQCB monitoring before the next section 303(d) list is completed. SWRCB staff proposes a Watch List that contains approximately 177 water bodies (Table 4).

The Watch List should not be considered part of the section 303(d) list, however, the Watch List will be submitted to USEPA.

Priorities and Schedules

In developing the 2002 section 303(d) submittal, the SWRCB staff reassessed the priorities established in the 1998 list. Based on the budgeted resources currently available to the SWRCB, it is proposed that the TMDLs targeted for development be changed to the priorities and schedules presented in Table 5. Only waters with a priority of high or medium are presented in Table 5; all other waters, not listed, will be assigned a low priority. TMDLs are scheduled to be completed for high priority waters by 2004.

TMDLs Completed List

A number of TMDLs have been completed. A complete TMDL includes a technical TMDL report, implementation plan, adoption by the RWQCBs, and approval by SWRCB, the Office of Administrative Law (OAL) and USEPA. Several TMDLs are in various stages of the approval process.

To show progress in developing TMDLs, the SWRCB staff proposes to create a list of TMDLs completed. At present, it is assumed that even though the TMDL has been completed that water quality standards or beneficial uses are not yet attained. Once it has been shown that standards are achieved and/or beneficial uses are attained the water bodies will be removed from this list.

The TMDLs Completed List should not be considered part of the section 303(d) list. In addition, the TMDLs Completed List will be submitted to USEPA.

Administrative Record

Copies of the SWRCB and RWQCB documents supporting the 2002 list submittal are posted on the SWRCB website at:

http://www.swrcb.ca.gov/303dupdate.html

The administrative record supporting the proposed 2002 Section 303(d) list is housed in the Division of Water Quality, State Water Resources Control Board, 1001 I Street, 15th Floor, Sacramento, California. To make an appointment to review the record, please call (916) 341-5566.

Table 1: Proposed Additions to the Section 303(d) List

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
1			
1	Jacoby Creek		
	Jacoby Cleek	Sediment	Unknown
	Laguna de Santa Rosa	~	
	C	Dissolved Oxygen	Unknown
		Nutrients	Unknown
	Russian River		
		Pathogens	Unknown
	Santa Rosa Creek		
	C+ 1 C 1/E+	Pathogens	Unknown
	Stemple Creek/Estero d	Sediment	Soil Erosion, Nonpoint Source
	Tule Lake and the Low National Wildlife Refu		
	•	pН	Unknown
2			
	Arroyo Las Positas		
		Diazinon	Urban Runoff/Storm Sewers
	Arroyo Mocho		
		Diazinon	Urban Runoff/Storm Sewers
	Central Basin/Pacific C Beach	Ocean at Baker	
		High Coliform Count	Urban Runoff/Storm Sewers, Combined Sewer Overflows
	San Mateo Coastal Bas at China Beach	in/Pacific Ocean	
		Beach Closures	Urban Runoff/Storm Sewers, Combined Sewer Overflows
	San Mateo Coastal Bas at Fitzgerald Marine Re		
		Beach Closures	Nonpoint Source
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Bas at Fort Funston Beach	in/Pacific Ocean	
		Beach Closures	Urban Runoff/Storm Sewers, Combined Sewer Overflows

gion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
	San Mateo Coastal Ba	sin/Pacific Ocean	
	at Ocean Beach		
		Beach Closures	Urban Runoff/Storm Sewers, Combined Sewer Overflows
	San Mateo Coastal Ba	sin/Pacific Ocean	
	at Pacifica State Beach San Pedro Beach)	ı (Linda Mar or	
	,	Beach Closures	Urban Runoff/Storm Sewers, Nonpoint Source
		High Coliform Count/Water/REC-1	Urban Runoff/Storm Sewers, Nonpoint Source
	San Mateo Coastal Ba at Pillar Point Beach	sin/Pacific Ocean	
		Beach Closures	Nonpoint Source
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Ba at Rockaway Beach	sin/Pacific Ocean	
		High Coliform Count	Urban Runoff/Storm Sewers, Nonpoint Source
	San Mateo Coastal Ba at San Gregorio Beach		
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Ba at Sharp Park Beach	sin/Pacific Ocean	
		Beach Closures	Urban Runoff/Storm Sewers
	San Mateo Coastal Ba at Surfer's Beach	sin/Pacific Ocean	
		Beach Closures	Nonpoint Source
		Total Coliform	Nonpoint Source
	San Mateo Coastal Ba at Venice Beach	sin/Pacific Ocean	
		Beach Closures	Urban Runoff/Storm Sewers
		High Coliform	Nonpoint Source
	San Mateo Coastal Ba Creek	•	
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Ba Creek	sin/San Gregorio	
		High Coliform Count	Nonpoint Source
	San Mateo Coastal Ba Creek	sin/San Pedro	
		High Coliform Count	Urban Runoff/Storm Sewers, Nonpoint Source
	San Mateo Coastal Ba Creek	sin/San Vicente	
	CICCK		

San Pablo Basin/Petaluma River

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Diazinon	Urban Runoff/Storm Sewers
	San Pablo Basin/Petaluma portion)	a River (tidal	
		Nickel	Municipal Point Sources, Urban Runoff/Storm Sewers, Atmospheric Deposition
	San Pablo Basin/San Pab	lo Reservoir	
		Mercury	Atmospheric Deposition
	South Bay Basin/Marina Mateo Co.)	Lagoon (San	
		High Coliform Count	Urban Runoff/Storm Sewers, Nonpoint Source
3	A1		
	Alamo Creek	Fecal coliform	Natural sources, Agriculture, Range Land
	Alisal Creek	Fecal coliform	Urban Runoff, Natural Sources, Nonpoint sources, Agriculture
	Atascadero Creek	Dissolved Oxygen	Agriculture, Urban
	Blosser Channel/Creek		Runoff, Unknown Sources
	Biosser Chamilei/Creek	Fecal coliform	Agriculture, Pasture Lands, Urban Runoff, Storm water, Natural Sources
	Bradley Canyon Creek		
		Fecal coliform	Agriculture, Pasture Lands , Urban Runoff, Storm water, Natural Sources
	Cholame Creek		
		Fecal coliform	Pasture lands, nonpoint sources, natural sources
	Gabilan Creek	Fecal coliform	Urban Runoff, Natural
	Llagas Creek		Sources, Nonpoint sources
	Liugus Crook	Chloride	Nonpoint and point sources
		Dissolved Oxygen	Nonpoint and point sources, Unknown sources
		Fecal coliform	Pasture lands, nonpoint sources, natural sources
		Sodium	Nonpoint and unknown sources
		TDS	Nonpoint and point sources

egion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Dissolved Oxygen	Agriculture, Urban Runoff, Pasture Lands, Unknown Sources
	Main Street Canal	Nutrients (nitrate)	Agriculture, Nonpoint Sources and Urban Runoff
	Nipomo Creek	Fecal coliform	Urban Runoff, Agriculture, Natural Sources
	Olso Flaco Lake	Nutrients (Nitrate)	Agriculture and nonpoint sources
	Orcutt Solomon Creek	Fecal coliform	Pasture lands, nonpoint sources, natural sources and Agriculture
	Pajaro River	Fecal coliform	Pasture lands, Agriculture, and natural sources
	Quail Creek	Fecal coliform	Pasture lands, Agriculture, and natural sources
	Salinas Reclamation Cana	ll Fecal coliform	Urban runoff, Pasture Lands, Natural Sources and Agriculture
	Salinas River (Upper)	Chloride	Agriculture, Urban Runoff, Pasture Lands
		Sodium	Agriculture, Urban Runoff, Pasture Lands
	San Lorenzo Creek	Fecal coliform	Agriculture, Urban Runoff, Pasture Lands and Natural Sources
	San Lorenzo River Water Creek	shed -Bean	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, residential use, roads, quarry
	San Lorenzo River Water Creek	shed-Bear	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, residential use, recreation and timber

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, residential use, vineyards and timber
	San Lorenzo River Wa Branciforte Creek	itershed-	
		Sedimentation/Siltation	Logging in upper watershed, improper/illegal
	San Lorenzo River Wa	tershed-Fall Creek	
		Sedimentation/Siltation	Trail system in Fall State Park (stream mile 1 and above), bank erosion/slumping, Residential use, road, trails
	San Lorenzo River Wa Creek	tershed-Kings	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, residential use, roads and timber
	San Lorenzo River Wa Creek	itershed-Love	-
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, agriculture, residential use, roads and timber
	San Lorenzo River Wa Charlie Gulch	tershed-Mountain	
		Sedimentation/Siltation	Residential use, timber, roads
	San Lorenzo River Wa Creek (Upper)	tershed-Newell	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, agriculture, residential use, roads and timber
	San Lorenzo River Wa Creek	tershed-Zayante	
		Sedimentation/Siltation	Improper/illegal grading of private roads and home sites, lack of vegetation around home sites, agriculture, residential use, roads and timber

Santa Maria River

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Fecal coliform	Pasture Lands, Urban Runoff, Agriculture, Natural Sources
		Nutrients (nitrate)	Urban Runoff, Agriculture and Pasture Lands
	South Coast/Pacific Ocean (a Creek (East Beach)	Mission	
		Fecal coliform	Urban Runoff, Agriculture, Natural Source, Non point sources and unknown sources
	South Coast/Pacific Ocean @ Quemado Beach) Arroyo	
		Fecal coliform	Pasture Lands, Agriculture, Nonpoint and natural sources
		Total coliform	Pasture Lands, Agriculture, Nonpoint and natural sources
	South Coast/Pacific Ocean @ Beach) Jalama	
		Fecal coliform	Pasture Lands, Agriculture, Nonpoint and natural sources
		Total coliform	Pasture Lands, Agriculture, Nonpoint and natural sources
	South Coast/Pacific Ocean (a Creek (East Beach)) Mission	
		Total coliform	Urban Runoff, Non point sources, Unknown sources, Agriculture
	Tembladero Slough		
		Fecal coliform	Pasture Lands, Urban Runoff, Agriculture, Natural Sources
	Tesquita Slough		
		Fecal coliform	Agriculture, Nonpoint Sources and Natural Sources
4			
	Avolon Beach-Santa Catalina	a Island	
		Bacteria counts	Point and nonpoint sources
	Ballona Creek Watershed		
		Dissolved copper	Nonpoint sources
		Dissolved lead Dissolved Zinc	Nonpoint sources Nonpoint sources (possible sources include urban and stormwater runoff)

	Pollutant/Stressor	Potential Pollutant Source(s
	рН	Nonpoint sources (possible sources include urban and stormwater
	Total Selenium	runoff) Nonpoint sources (Stormwater)
Calleguas Creek R10 (Con Hill Canyon)	nejo Creek,	
-	Chloride	Point and nonpoint sources
	Fecal Coliform	Nonpoint sources
Calleguas Creek R11, Arr	oyo Santa Rosa	
,	Fecal Coliform	Point and nonpoint sources
Calleguas Creek R13, Cor South Fork		•
	Chloride	Point and nonpoint sources
Calleguas Creek R2		
	DDT	Nonpoint sources
	Dissolved Copper	Nonpoint sources
	Fecal Coliform	Point and nonpoint sources
Calleguas Creek R4		•
.	Fecal Coliform	Farms, septic, percolation
Calleguas Creek R4, Revo		· -7 - · K · · · 7 F
	Boron	Nonpoint sources
	Chloride	Nonpoint sources
	Nitrate as Nitrate	Point and nonpoint sources
	Sulfate	Nonpoint sources
	TDS	Nonpoint sources
Calleguas Creek R6, Arro	yo Las Posas	
	Fecal Coliform	Point and nonpoint sources
	Nitrate as Nitrate	Point and nonpoint sources
Calleguas Creek R9A, Cal Diversion (Conejo Creek)		
- ,	Fecal Coliform	Point and nonpoint sources
	Nitrate as Nitrate	Point and nonpoint sources
	Nitrate as Nitrogen	Point and nonpoint sources
-	Nitrite as Nitrogen	Point and nonpoint sources
Calleguas Creek R9B, Co. Main Stem	nejo Creek	
	Fecal Coliform	Point and nonpoint sources
Calleguas Creek-Arroyo S	Simi R7	
2	Fecal Coliform	Nonpoint sources
Castlerock Beach-Santa M	Ionica Bav	-
2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Total Coliform	Nonpoint sources
Channel Islands Harbor B Hobie Beach		1
	Fecal Coliform	Nonpoint sources

egion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Chlordane	Historical use of
		D: 11:	pesticides and lubricants.
		Dieldrin	Historical use of pesticides and lubricants.
		НСН	Historical use of
			pesticides and lubricants.
		PCBs	Historical use of pesticides and lubricants.
	Hopper Creek Tributa	ry to Santa Clara	
	River Reach 4 (Fillmo Gauging Station	ore Street Blue Cut	
		TDS	Point and nonpoint sources
	Hopper Creek Tributa	ry to Santa Clara	
	River Reach 4 (Fillmo Gauging Station)	ore Street Blue Cut	
		Sulfate	Point and nonpoint sources
	Los Angeles River Est Bay)	tuary (Queensway	
	• /	Chlordane	Historical use of
		DDT	pesticides and lubricants Historical use of
			pesticides and lubricants
		Lead	Historical use of pesticides and lubricants
	Los Angeles River R2 Creek	-McCoy Canyon	
		Fecal Coliform	Nonpoint sources
		Nitrate as Nitrogen	Runoff from natural and urban sources
	Los Angeles River R2 Creek	-McCoy Canyon	
		Nitrate as Nitrogen	Nonpoint sources
		Total Selenium	Natural and urban sources
	Los Angeles River Re		
		Dissolved Cadmium	Point and nonpoint sources
		Dissolved Copper	Point and nonpoint sources
		Dissolved Zinc Total Aluminum	Point and nonpoint sources Point and nonpoint sources
	Los Angeles Watersho Creek		Tome and nonpoint sources
	CIOON	Fecal Coliform	Natural and urban sources
		Total Selenium	Nonpoint sources
	Los Cerritos Channel		
		Chlordane	Unknown
	Malibu Creek Watersh	ned	
		Sedimentation	Unknown
	Malibu Creek Watersh Las Virgenes Creek, T	· · · · · · · · · · · · · · · · · · ·	
	Medea Creek)	Sedimentation	Unknown
		Scumentation	OHKHOWH

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
	Malibu Creek Watersl	hed-Malibu Lagoon	
		рН	Unknown (potential sources septic systems, storm drains and birds)
	Marina del Rey Harbo	or-Back Basin	
		PCBs	Historical use of pesticides, stormwater runoff/aerial deposition from urban areas.
	McGrath Lake		
		Fecal Coliform	Agriculture, landfill runoff and natural sources
	McGrath Lake Estuar	y	
		PCBs	Historical use of pesticides and lubricants, stormwater runoff/aerial deposition from agriculture fields.
	Ormond (Industrial D	rain- #43000)	
		Beach Postings	Point and nonpoint sources
	Peninsula Beach #230	000	
		Beach Postings	Point and nonpoint sources
	Piru Creek Tributary t River Reach 4 (Fillmo Blue Cut Gauging Sta	ore A Street and	Nonpoint sources and Conservation Discharge Releases
	Pole Creek/Canyon To Clara River R3 (Freen Fillmore Street A)		
	,	Sulfate	Nonpoint sources
		TDS	Nonpoint sources
	Revolon Slough Main Lagoon to Central Av	_	
		Dacthal	Historical use of pesticides and lubricants.
	Rincon Beach (Flagpo	ole-#1050)	
		Beach Postings	Point and nonpoint sources
	San Buenventure Beach		
	San Gabriel River Wa Creek	Total Coliform tershed-Coyote	Nonpoint sources
		Dissolved copper	Nonpoint sources
		Dissolved Lead	Nonpoint sources
		Dissolved Zinc	Nonpoint sources
		Total Selenium	Nonpoint sources
	San Gabriel River Wa	tershed-Reach 2	
		Dissolved copper	Nonpoint sources
		Dissolved Zinc	Nonpoint sources

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
	San Gabriel River Wa Creek	tershed-San Jose	
		рН	Point and nonpoint sources
	San Gabriel Watershe	d- Estuary	
		Ammonia as Nitrogen	Point sources
	Santa Clara River R 3 Diversion to Fillmore		
		Nitrite as Nitrogen	Point and nonpoint sources
	Seaside Park	Total Coliform	Nonpoint sources
	Sespe Creek Tributary River Reach 3 (Freem	y to Santa Clara	. <u>F</u>
	Fillmore Street A)	an Biversion to	
	i iiiiiiiii biioti ii)	Chloride	Nonpoint sources
		рН	Nonpoint sources
	Surfer's Point (Stables	s-#13000)	•
	()	Beach Postings	Point and nonpoint sources
	Todd Barranca-Whee Tributary to Santa Cla (Freeman Diversion to	ara River R3	
	(1 recinal Diversion a	Sulfate	Nonpoint sources
		TDS	Nonpoint sources
	Ventura Estuary		
	, and the second	Fecal coliform	Stables and horse property
		Total coliform	Stables and horse property
	Ventura River Waters	hed-Canada Larga	
		Dissolved Oxygen	Nonpoint sources
		Fecal Coliform	Horse stables, land use, cattle, wildlife
	Ventura River Waters Creek	hed-San Antonio	
		Total nitrogen	Nonpoint sources
5			
	Arcade Creek		
		Copper	Urban Runoff/Storm Sewers
	Avena Drain		
		Ammonia	Agriculture/Dairies (manure carried in wastewater to Avena
		Pathogens	Drain). Agriculture/Dairies
			(manure carried in wastewater to Avena Drain).
	Bear Creek		,
		Mercury	Extraction/Abandoned Mines
	Black Butte Reservoir	:	

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Mercury	Resource Extraction (abandoned mines)
	Butte Slough	Diazinon	Agriculture (Diazinon Spray used on dormant almond and stonefruit crops)
		Molinate	Agriculture (Molinate Aerial Spray used on rice fields)
	Camanche Reservoir	Aluminum	Resource Extraction (abandoned mines)
	Camp Far West Reservoir		(
		Mercury	Resource Extraction (abandoned mines)
	Clover Creek	Fecal Coliform	Human and/or Livestock Sources
	Colusa Basin Drain	Azinphos-methyl	Agriculture (Used to control insects on almonds, walnuts and other crops).
		Diazinon	Agriculture
		Molinate	Agriculture (Molinate Aerial Spray used on rice fields)
	Del Puerto Creek		
		Chlorpyrifos	Agriculture (application on orchards and field crops)
		Diazinon	Agriculture
	Don Pedro Lake	Mercury	Resource Extraction (abandoned mines)
	Five Mile Slough		(uoundoned mines)
	The man stongs	Low Dissolved Oxygen	Urban Runoff/Storm Sewers
		Pathogens	Urban Runoff/Recreation
	Ingram/Hospital Creek		
		Chlorpyrifos	Agriculture
		Diazinon	Agriculture
	Jack Slough	Diazinon	Agriculture (application on orchards and field crops)
	Lake Combie		
		Mercury	Unknown
	Lake Englebright	Mercury	Resource Extraction (abandoned mines)

egion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
	Little Deer Creek		
		Mercury	Resource Extraction (abandoned mines)
	Lower Bear River		
		Diazinon	Agriculture (Diazinon Spray used on dormant almond and stonefruit crops)
	Lower Calaveras River		* /
		Low Dissolved Oxygen	Urban Runoff/Storm Sewers
		Pathogens	Urban Runoff/Recreation
	Lower Mokelume River		
		Aluminum	Resource Extraction (abandoned mines)
	Lower Putah Creek		
		Mercury	Mining, unknown source.
	Lower San Joaquin River	Mercury	Resource Extraction (abandoned mines)
	Lower Stanislaus River		(uoundoned nines)
	Lower Statistates Rivel	Mercury	Resource Extraction (abandoned mines)
	Mormon Slough		
		Low Dissolved Oxygen	Urban Runoff/Storm Sewers
		Pathogens	Urban Runoff/Recreation
	Mosher Slough		
		Low Dissolved Oxygen	Urban Runoff/Storm Drains.
		Pathogens	Urban Runoff/Storm Sewers
	Newman Wasteway		
		Chlorpyrifos	Agriculture
		Diazinon	Agriculture (Used on nut and fruit orchards in winter months)
	Oak Run Creek		
		Fecal Coliform	Human and/or Livestock Sources
	Orestimba Creek		
		Azinphos-methyl	Agriculture (Used to control insects on
		DDE	almonds, walnuts and other crops).
		DDE	Historical Agriculture (prior to being banned in 1972)
	Rollins Reservoir		->(-)
		Mercury	Resource Extraction

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Mercury	Resource Extraction (abandoned mines)
	Smith Canal		
		Low Dissolved Oxygen	Urban Runoff/Storm Sewers
		Organophosphorus Pesticides	Urban Runoff
		Pathogens	Urban Runoff/Recreation
	South Cow Creek	Fecal Coliform	Human and/or Livestock Sources
	Stockton Deep Water C	Channel	
	Stockhon Book Water C	Pathogens	Urban Runoff/Recreation
	Sutter Bypass		
	J r	Diazinon	Agriculture
	Upper Bear River		
		Mercury	Resource Extraction (abandoned mines)
	Walker Slough		
		Pathogens	Urban Runoff/Recreation
	Wolf Creek	Fecal Coliform	Urban Runoff/Recreation/Agricul ture
6			
Ü	Big Meadow Creek (Tri	ibutary to Lake	
		Pathogens	Waste from livestock grazing believed to be primary source.
	Blackwood Creek (Trib Tahoe)	utary to Lake	
		Iron (plant nutrient)	Erosion from severely disturbed areas (logging, gravel mining)
		Nitrogen	Sources are atmospheric deposition, erosion, stormwater
		Phosphorus	Erosion from severely disturbed areas (logging, gravel mining), atmospheric, deposition, stormwater, forest fire.
	Buckeye Creek		·
	,	Pathogens	High bacterial counts coincide with months when livestock are present. Natural sources of
			bacteria may also occur.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s
		Pathogens	Fecal coliform counts were highest during grazing season.
	East Walker River be Reservoir	low Bridgeport	
	Reservoir	Nitrogen	Reservoir releases, stormwater, erosion
		Phosphorus	Release from Bridgeport Reservoir
	General Creek (Tribu	tary to Lake Tahoe)	
		Iron (plant nutrient)	Major sources from erosion, stormwater
		Phosphorus	Major sources from erosion, atmospheric deposition, stormwater
	Heavenly Valley Cree	ek between USFS	
	boundary and conflue Creek		
	CASON	Sediment	Source is erosion from upstream developments.
	Indian Creek		•
		Pathogens	Fecal coliform counts were highest during grazing season.
	Monitor Creek		8
		Sulfate	Source is acid mine drainage.
		TDS	Source is acid mine drainage.
	Robinson Creek		
		Pathogens	High coliform counts coincide with months when livestock are present.
	Searles Lake		
		Petroleum Hydrocarbons	Source is IMCC Chemical mineral extraction operation.
	Swauger Creek		
	-	Pathogens	Livestock, wildlife, septic systems, human recreational users.
		Phosphorus	Partially natural sources
	Tallac Creek (Tributa	ry To Lake Tahoe)	
		Pathogens	Livestock wastes are primary source.
	Trout Creek (Tributar	ry to Lake Tahoe)	
		Iron (plant nutrient)	Natural loading has increased due to increased erosion and stormwater runoff due to land disturbance.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Nitrogen	Source are natural as well as anthropogenic, including atmospheric deposition, stormwater, fertilizer use, livestock grazing, septic systems, wastewater disposal to land.
		Pathogens	Livestock wastes are primary source.
		Phosphorus	Sources are erosion, stormwater, atmospheric, Deposition due to wetland and riparian disturbance.
	Upper Truckee River	(Tributary to Lake	
	Tahoe)	Iron (plant nutrient)	Natural background, increased loading due to land disturbance, stormwater.
		Pathogens	Waste from livestock grazing believed to be primary source.
		Phosphorus	Erosion, fertilizer use, stormwater
	Ward Creek (Tributar	y to Lake Tahoe)	
	,	Iron (plant nutrient)	Iron is naturally present in soil, but loading has increased due to erosion from land disturbance.
		Nitrogen	Natural (nitrogen fixation) and anthropogenic (atmospheric, deposition, erosion, stormwater)
		Phosphorus	Erosion, stormwater, atmospheric deposition
	West Fork Carson Riv Woodfords	ver, Headwaters to	-
		Nitrogen	Sources may be septic systems, erosion, stormwater, historic livestock grazing, and natural nitrogen fixation.
		Percent sodium	Road salt, septic systems,
		Phosphorus	Sources are erosion, stormwater, atmospheric, deposition.
	West Fork Carson Riv Paynesville	ver, Woodfords to	
	Tuylicsville	Nitrogen	Pasture runoff, stormwater, erosion, atmospheric deposition
		Pathogens	Partially natural sources (i.e. wildlife). Primary source is believed to be livestock waste.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source
		Percent sodium	Road salt, septic systems, natural
7			
	New River		
		1,2,4-trimethylbenzene	Untreated and improperly treated industrial waste discharges from Mexico.
		Chloroform	Untreated and improperly treated industrial waste discharges from Mexico.
		Dissolved oxygen	5-20 million gallons per day of raw sewage from Mexico discharged to New River.
		m,p,-Xylenes	Untreated and improperly treated industrial waste discharges from Mexico.
		o-Xylenes	Untreated and improperly treated industrial waste discharges from Mexico.
		p-Cymene	Untreated and improperly treated industrial waste discharges from Mexico.
		p-DCB	Untreated and improperly treated industrial waste discharges from Mexico.
		Toluene	Untreated and improperly treated industrial waste discharges from Mexico.
		Trash	Anthropogenic sources
8			
O			
	Huntington State Beach-from	n Newland	
	Avenue to Santa Ana River	Pasteria (wat sassan)	Unknown
	Newport Beach, 1000 feet do Santa Ana River	Bacteria (wet season) own coast of	Ulikilowii
	Santa Ana River	Bacteria (wet season)	Unknown
	Pelican Hill Waterfall	(((((((((((((((((
		Total and Fecal coliform	Unknown
	Pelican Point Creek		
		Total and Fecal coliform	Unknown
	Pelican Point Middle Creek		
	G D: C 1 D 11	Total and Fecal coliform	Unknown
	San Diego Creek, Reach 1	Fecal coliform	Unknown
	Santa Ana Delhi Channel	recarcomorni	Chkhowh
	Santa 7 tha Denn Chamier	Fecal coliform	Unknown
	Cool Doods Con Calmid Div		
	Seal Beach, San Gabriel Riv Main St. Pier	ci widuii to	

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(
9			
	Agua Hedionda Creek		
		Diazinon	Urban and agricultural runoff
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Aliso Creek		
		Enterococci	Urban runoff, other point sources and nonpoint sources
		Escherichia coli	Urban runoff, other point sources and nonpoint sources
		Fecal coliform	Urban runoff, other point sources and nonpoint sources
		Phosphorus	Urban runoff, other point sources and nonpoint sources
		Toxicity	Organophosphate pesticides are a significant component of the aquatic toxicity in storm samples. Organophosphate pesticides are found in urban and agricultural run- off.
	Cloverdale Creek		
		Phosphorus	Urban runoff, other point sources and nonpoint sources
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Dana Point Harbor		*
		Bacterial indicators total/fecal coliform, enterococcus	Sewage spills/leaks, urban runoff, other point sources, nonpoint sources, and domestic/wild animals.
		Dissolved copper	RWQCB staff has knowledge of antifouling (Cu-containing) paint use in Dana Point Harbor.

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Forrester Creek		
		Fecal coliform	Urban runoff, other point sources, nonpoint sources, and sewage spills
		рН	Industrial spills, urban runoff, other point sources, nonpoint sources, lack of shade cover, light penetration, (solar) heating of the water, increased photosynthesis, leached concrete
		Total dissolved solids	components. Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Green Valley Creek		P
		Sulfate	Urban runoff, other point sources, nonpoint sources, and natural sources
	Kit Carson Creek		
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Lake Hodges (Hodges F	Reservoir)	
	- · ·	Color	Urban runoff, other point sources and nonpoint sources
		Nitrogen	Urban runoff, local dairies, agriculture, orchards, other point sources and nonpoint sources
		Phosphorus	Urban runoff, local dairies, agriculture, orchards, other point sources and nonpoint sources

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Lake Sutherland (Sutherland)	and Reservoir)	
		Color	Excessive algae growth, urban runoff, other point sources, and nonpoint sources
	Murrieta Creek		
		Phosphorus	Urban runoff, other point sources and nonpoint sources
	Pacific Ocean Shoreline State Beach/Miramar Re		
		Bacterial indicators	Sewage spills/leaks, urban runoff, other point sources, nonpoint sources, and domestic/wild animals.
	Pine Valley Creek (Uppe	er)	
		Enterococci	From horse stables, cattle grazing in and near the creek, and human encampments
	Prima Deshecha Creek		•
		Phosphorus	Urban runoff, other point sources and nonpoint sources
		Turbidity	Channelization, increased water velocity, undercutting of banks; increased turbidity; current/historic construction
	San Diego Bay (Switzer	Creek)	
		Degraded benthos	Elevated concentrations of chlordane, lindane, polynuclear aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs), current/historic shipyard activity, historic PAH and garbage dumping, urban runoff, other point sources, and nonpoint sources.

gion	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Toxicity	Elevated concentrations of chlordane, lindane, polynuclear aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs), current/historic shipyard activity, historic PAH and garbage dumping, urban runoff, other point sources, and nonpoint sources.
	San Diego River (lower)		
		Dissolved oxygen	Bacterial loading, subsequent decomposition of organic matter, urban runoff, other point sources, and nonpoint sources.
		Fecal coliform	Urban runoff, other point sources, nonpoint sources, and sewage.
		Phosphorus	Urban runoff, other point sources, and nonpoint sources.
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	San Luis Rey River		
	,	Chloride	Urban runoff, other point sources and nonpoint sources
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Sandia Creek		
		Total dissolved solids	Anthropogenic sources, imported water, evaporation, and natural salt sources. Also, urban runoff, agriculture runoff, other point sources, and nonpoint sources.
	Santa Margarita River (upper	r)	
		Phosphorus	Urban runoff, other point sources and nonpoint sources
	Segunda Deshecha Creek		
	J	Phosphorus	Urban runoff, other point sources and nonpoint sources

Region	Water Body	Pollutant/Stressor	Potential Pollutant Source(s)
		Turbidity	Channelization, increased water velocity, undercutting of banks; increased turbidity, current/historic construction
	Tijuana Estuary		
		Dissolved oxygen	Massive bacterial loading from raw sewage flows cause oxygen depletion, decaying organic matter, urban runoff, other point sources, and nonpoint sources.

Table 2: Proposed Deletions from the 1998 Section 303(d) List

Region	Water Body	Pollutant/Stressor
2		
2	Arroyo Hondo	
	Arroyo fiondo	Diazinon
	Central Basin/San Francisco Bay, Central	
		Copper
	San Pablo Basin/San Pablo Bay	
		Copper
	Santa Clara Basin/San Francisco Bay,	Nickel
	South	
		Nickel
	South Bay Basin/San Francisco Bay, Lower	
		Copper
	Chiana Dasia/Casamanta Can Isagain	Nickel
	Suisun Basin/Sacramento-San Joaquin Delta	
	Beita	Copper
		Nickel
	Suisun Basin/Suisun Bay	
		Copper
	Suisun/San Pablo Basins/Carquinez Strait	Nickel
	Suisuil/Sail Laoio Basilis/Carquillez Strait	Copper
		Nickel
3		
-	Chorro Creek	
	Chorro Crock	Metals
	Estero Bay/Los Osos Creek	
		Priority organics
	San Lorenzo River Lagoon	
		Sediment/Siltation
4		
	Arroyo Simi R1 (Moorpark Fwy (23) to Brea Canyon)	
	,,	Chromium
		Nickel
		Selenium
		Silver Zinc

gion	Water Body	Pollutant/Stressor
	Ballona Creek	
		Arsenic
		Copper
		Lead
		Silver
		TBT
	Ballona Wetland	
		Arsenic
	Calleguas Creek R1 (estuary to 0.5 mi	
	South of Broome Rd.) and R2 (0.5 mi	
	South Broome Rd to Potrero Rd)	
	South Broome Ru to Folicio Ru)	Dacthal
	Collogues Create D10 (Consis Create Hill	Dactilal
	Calleguas Creek R10 (Conejo Creek, Hill	
	Canyon)	Discolar d Ossessa
	C.11	Dissolved Oxygen
	Calleguas Creek R11, Arroyo Santa Rosa	
		Dissolved Oxygen
	Calleguas Creek R2	
		Stressor unknown
	Calleguas Creek R9A, Camrosa Diversion	
	(Conejo Creek)	
		Dissolved Oxygen
	Colorado Lagoon	
	č	Lead
	Conejo Creek R1, R2, R3, R4	Loud
	Conejo Cicck K1, K2, K3, K4	0.1.
		Clamium
		Chromium
		Dacthal
		Nickel Silver
	Coyote Creek	SHVCI
	Coyote Creek	0:1
	I A Hardan C 111 (101)	Silver
	LA Harbor-Consolidated Slip	
		TBT
		Zinc
	Lake Calabasas	
		Copper
		Zinc
	Los Angeles River R5 (within Sepulveda	
	Basin)	
		Chlorpyrifos
	Malibou Lake	
		Copper
		PCB
	Marina del Rey Harbor-Back Basin	100
	Marina uci kcy maruul-dack dasiii	C
		Copper
		DDT

Region	Water Body	Pollutant/Stressor
		Lead
		TBT
		Zinc
	Mugu Lagoon	
		Dacthal
	Port Hueneme (back basins)	
	,	PAHs
		TBT
		Zinc
	Rio de Santa Clara/Oxnard Drain #3	
		Chem A
	San Gabriel River Watershed- Estuary	
	Sair Saorior In 101 Water Side Establis	Arsenic
	Santa Clara River Estuary Beach	Arsonic
	Sama Ciara River Estuary Deach	F1 C-lif
		Fecal Coliform Total Coliform
	Vonture Estra-	1 otal Colliorm
	Ventura Estuary	
	· · · · · · · · · · · · · · · · · · ·	DDT
	Ventura River R1 (Estuary to Main Street) and R2 (Main Street to Weldon Canyon)	
		Copper
		Selenium
		Silver
		Zinc
	Westlake Lake	
		Chlordane
		Copper
5		
	American River Lower	
		Group A Pesticides
6		
	Big Springs	
		Arsenic
	Crowley Lake	3.500
	Crowley Euro	Arsenic
	East Fork Carson River	Arsenic
	East Fork Carson River	N
	E (Will B)	Nutrients
	East Walker River	
		Metals
	Grant Lake	
		Arsenic
	Hot Creek	
		Metals
	Lower Alkali Lake	
		Salinity, TDS, Chlorides
		ballity, 100, Cholides

Region	Water Body	Pollutant/Stressor
	Middle Alkali Lake	
		Salinity, TDS, Chlorides
	Mojave River	
		Priority Organics
	Mojave River between Upper and Lower Narrows	
	- 1012 - 110	Chloride
		Sulfate
		TDS
	Mono Lake	
		Salinity, TDS, Chlorides
	Owens Lake	
		Salinity, TDS, Chlorides
	Owens River	
		Arsenic
	Snow Creek	
		Habitat Alterations
	Stampede Reservoir	
		Pesticides (lindane)
	Tinemaha Reservoir	
		Arsenic
	Top Spring	
	1 1 0	Radiation
	Upper Alkali Lake	
	11	Salinity, TDS, Chlorides
	Wendel Hot Springs, Amedee Hot Springs,	
	Hot Creek, Fales Hot Springs, Little Hot	
	Creek, Little Alkali Lake, Deep Springs	
	Lake, Keogh Hot Springs, Amaragosa	
	River	
-		Salinity, metals, arsenic
8		
	Lower Newport Bay	
		Fecal coliform
		Nutrients
	-	Siltation
	San Diego Creek, Reach 1	
		Nutrients
		Siltation
	San Diego Creek, Reach 2	
		Nutrients
		Siltation
	Santa Ana River, Reach 3	
		Nitrogen
		Total Dissolved Solids

Region	Water Body	Pollutant/Stressor
	Upper Newport Bay	
		Fecal coliform
		Nutrients
		Siltation
9		
	Pacific Ocean Shoreline (Coronado Beach)	
		Bacterial indicators

Table 3: Changes Proposed for the Section 303(d) List

Region	Water Body	Pollutant	Recommended Change
2			
	Lake Merritt		
		Trash	Change in listed water body. Change pollutant from Floating Material to Trash.
	Tomales Bay		
		Mercury	Change in listed water body. Change pollutant from Metals to Mercury.
	Walker Creek		
		Mercury	Change in listed water body. Change pollutant from Metals to Mercury.
4			
	McGrath Lake Estuary		
		Total pesticides	Change in listing, (Chemicals can be listed individually)
5			
	Cache Creek		
		Mercury and Unknown Toxicity	Change in Total Size and Size Affected.
	Camanche Reservoir		
		Copper	Change in listing to include reservoir on list separate from the river.
		Zinc	Change in listing to include reservoir on list separate from the river.
	Delta Waterways		
		Chlorpyrifos, DDT, Diazinon, Group A pesticides, Mercury, and Unknown Toxicity.	Change in Total Size and Size Affected.
		Dissolved Oxygen	Change in Total Size and Size Affected.
	Dunn Creek	Mercury and Metals.	Change in Total Size and
		,	Size Affected.
	Fall River	Sedimentation and Siltation	Change in size affected.
	French Ravine		-

Region	Water Body	Pollutant	Recommended Change
		Bacteria	Change in Total Size and Size Affected.
	Horse Creek		
		All metals (Cadmium, Copper, Lead, Zinc)	Change in size affected.
	Humbug Creek		
		Sedimentation and Siltation, Mercury, Copper, and Zinc.	Change in size affected.
	James Creek		
		Nickel and Mercury	Change in Total Size and Size Affected.
	Lower Mokelumne River		
		Copper	Change in areal extent.
		Zinc	Change in areal extent.
	Lower Stanislaus River		
		Diazinon, Group A Pesticides, Unknown toxicity	Change in Total Size and Size Affected.
	Lower Toulumne River		
		Diazinon	Change in Total Size and Size Affected.
		Group A Pesticides, Unknown Toxicity	Change in Total Size and Size Affected.
	Marsh Creek		
		Mercury	Change in Total Size and Size Affected.
		Metals	Change in Total Size and Size Affected.
	Mosher Slough		
		Diazinon and Chlorpyrifos	Change in Total size affected.
	San Carlos Creek		
		Mercury	Change in Total Size and Size Affected.
6			
	Eagle Lake		
	Lugic Luke	Low Dissolved Oxygen	Change listing from low
		low bissoived oxygen	dissolved oxygen to separate listings for nitrogen and phosphorus.
	Lake Tahoe		-
		Nutrients	Clarify previous listing for nutrients. Replace nutrient listing with separate listings for nitrogen and phosphorus.

Region	Water Body	Pollutant	Recommended Change
		Metals	Clarify metals listing. Replace metals listing with listings for 4 specific metals - iron, silver, aluminum, manganese.
7			
	Coachella Valley Stormwater Channel	Change listing from bacteria to pathogens	Change pollutant description.
	New River	to pullogeno	ucos i provin
		Change listing from bacteria to pathogens	Change pollutant description.
	Palo Verde Outfall Drain		•
		Change listing from bacteria to pathogens	Change pollutant description.
9		<u> </u>	•
	Pacific Ocean Shoreline (Ocean Beach)		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.
	Pacific Ocean Shoreline (San Onofre State Beach/San Mateo Creek Outlet)		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.
	Pacific Ocean Shoreline (South Capistrano State Beach)		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.
	San Diego Bay Kellog Street Beach (Pueblo San Diego HU [908.00] and Sweetwater HU [909.00])		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.
	San Diego Bay Shelter Island Shoreline Park (Pueblo San Diego 908.00 and Sweetwater)		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.

Region	Water Body	Pollutant	Recommended Change
	San Diego Bay, Coronado		
		Bacterial indicators	Add specific location to 1998 listing within same hydrologic area.

Table 4: Proposed Watch List

Region	Water Body	Pollutant/Stressor
1		
1		
	Alder Creek	
	Detail Const	Sediment and Temperature
	Beith Creek	0.15
	Dia Divor	Sediment
	Big River	Tomorotoro
	Brush Creek	Temperature
	Brusii Creek	Sediment
	Casper Creek	Sedifficit
	Cusper Creek	Pathogens
	Cottaneva Creek	i unogens
	Commerce Crook	Sediment
	Dehaven Creek	~
		Sediment
	East Fork Trinity River	
	, and the second	Mercury
	Elk Creek	·
		Sediment
	Greenwood Creek	
		Sediment and Temperature
	Grotzman Creek	
		Sediment
	Gualala River	
		Temperature
	Hardy Creek	
		Sediment
	Howard Creek	
		Sediment
	Humboldt Bay	
		PCBs and Dieldrin
	Lara Caral	Sediment
	Juan Creek	0.15
	Vlamath Diva-	Sediment
	Klamath River	G. F.
	Laguna da Carta Dasa	Sediment
	Laguna de Santa Rosa	Chromium C
		Chromium, Copper, and Zinc Diazinon
	Lake Mendocino	Diazinon

Region	Water Body	Pollutant/Stressor
		Mercury
	Lake Sonoma	
	15.15	Mercury
	Mad River	
	Mad River Slough	Temperature
	Wad Kiver Slough	PCBs
	Mallo Pass Creek	
		Sediment
	Pudding Creek	
		Pathogens
	Redwood Creek	
	Russian River	Temperature
	Russian River	Diazinon
		Temperature
	Santa Rosa Creek	. <u>k</u>
		Chromium, Copper, and Zinc
		Diazinon
	Schooner Gulch	
	Shasta River	Sediment
	Silasta Kivei	Sediment and Nutrients
	Ten Mile River	Sedificit and reducits
		Temperature
	Tule Lake and Lower Klamath Lake National Wildlife Refuge	
		Dissolved Oxygen and Unionized Ammonia
	Usal Creek	
	TI	Sediment
	Virgin Creek	D. d.
	Wages Creek	Pathogens
	wages Cleek	Sediment
2		Scamen
	Carquinez Strait	
		Copper
		Nickel PAHs, PBDEs
	Central Basin/Stege Marsh	111115, 1 0000
	2 = 2 30	Sediment Toxicity and Benthic
		Community Effects
	Lake Merced	
		Low Dissolved Oxygen

Region	Water Body	Pollutant/Stressor
	Lake Merritt	
		Low Dissolved Oxygen
	Novato Creek below Stafford Dam	,,
		Sedimentation and Siltation
	Pilarcitos Creek below Pilarcitos Reservoir	
		Sedimentation and Siltation
	Richardson Bay	
		PAHs, PBDEs
	Sacramento-San Joaquin Delta	
		Copper
		Nickel
		PAHs, PBDEs
	San Francisco Bay, Central	Common
		Copper PAHs, PBDEs
	San Francisco Bay, Lower	i Alis, I DDEs
	Sun Francisco Buy, Dower	Copper
		Nickel
		PAHs, PBDEs
	San Francisco Bay, South	
		Copper
		Nickel
	G P.11 P. : /C / C P.1	PAHs, PBDEs
	San Pablo Basin/Castro Cove, Richmond	m
	Can Dahla Day	Toxicity
	San Pablo Bay	Common
		Copper Nickel
		PAHs, PBDEs
	South Bay Basin/Central Basin, San	,
	Francisco	
		Toxicity
	South Bay Basin/Islais Creek	
		Sediment Toxicity and Benthic
	South Bay Basin/Mission Creek	Community Effects
	South Bay Basin/Mission Creek	Calimant Tanisita and Dandaia
		Sediment Toxicity and Benthic Community Effects
	South Bay Basin/Oakland Inner Harbor (Fruitvale site)	*
	·	Toxicity
	South Bay Basin/Oakland Inner Harbor (Pacific Dry-dock Yard 1 site)	
	· · · · · · · · · · · · · · · · · · ·	Toxicity
	South Bay Basin/Redwood Creek, tidal portion (San Mateo County)	
	-	E. coli

Region	Water Body	Pollutant/Stressor
	South Bay Basin/San Leandro Bay	
		Toxicity
	Suisun Basin/Peyton Slough	
	Salsan Basin i Vyvon Sisagn	Sediment Toxicity and Benthic
		Community Effects
	Suisun Bay	
		Copper
		Nickel
		PAHs, PBDEs
	Urban Creeks, Lakes, and Shorelines	
		Trash
3		
5	Can I wis Obigno Create at the greath	
	San Luis Obispo Creek at the mouth	D 1 11 : 4 11:1
		Polychlorinated biphenyls (PCBs)
4		
	Calleguas Creek Watershed-Conejo Creek	
	R9B	
		Unnatural Foam and Scum
	Calleguas Creek R10 (Conejo Creek, Hill	
	Canyon)	
		Nitrate as Nitrogen
	Calleguas Creek Watershed	
		Sedimentation
	Dominguez Channel Estuary (to Vermont)	
		Chlordane
		Copper
		PCBs
		Unknown pollutant
	LA Harbor-Consolidated Slip	
		Arsenic
		Cadmium
		Copper
		Dieldrin
		Mercury
		Nickel Toxaphene
	Los Angeles River Estuary (Queensway	т оларпене
	Bay)	
	Duy)	PCBs
	Malibu Creek Watershed-Cold Creek	
	manda creek materialea cola creek	Algae
	Malibu Creek Watershed-Malibu Creek	111gut
	Mandu Cicck Watershed-Mandu Cicck	Total Selenium
	McGrath Lake Estuary	i otai Sciciliulii
	MICCHAID LAKE ESHIATV	

Region	Water Body	Pollutant/Stressor
	Mugu Lagoon	
		Dieldrin
	San Gabriel River Estuary	
	an the term of	Trash
	Santa Clara River R 3 (Freeman Diversion	
	to Fillmore Street A)	
		Nitrite and Nitrate as Nitrogen
5		
	Lower Putah Creek	
	Lower Fatan Creek	Unknown Toxicity
	Upper Putah Creek	omnown remeny
	opper rumin ereen	Unknown Toxicity
6		
	Buckeye Creek	
		Phosphorus
	Cold Stream	
		Sediment
	Donner Creek	
		Sediment
	Donner Lake	
		Boat Fuel Constituents
		Pathogens
	Eagle Lake	
	-	Mercury
	Emerson Creek	
	W 1 W 1 G 1	Sediment
	Heavenly Valley Creek	
	H 1 W H C 1 '41' LIGEO	Chloride
	Heavenly Valley Creek, within USFS boundary	
	boundary	Phosphorus
	Lake Tahoe	Thosphorus
	Duke Tunoe	Boat fuel constituents
		Iron
		Lead in sediment
		Mercury in sediment
		Pesticides (40 different compounds)
	Lassen Creek	
	·	Sediment
	Lily Lake	
	·	Nutrients
	Little Truckee River	
		Sediment
	Long Valley Creek	

Region	Water Body	Pollutant/Stressor
		Sediment
	Martis Creek	
		Nutrients
	Pine Creek	
		Nutrients
	Raider Creek	
		Sediment
	Robinson Creek, Hwy 395 to Bridgeport Reservoir	
		Nitrogen
	Squaw Creek Meadow Wetlands	
		Pesticides
	Stampede Reservoir	
		Chlordane, lindane
		Pesticides (lindane)
	Summit Creek	
	g Pi 1/ AP i G 1	Petroleum products
	Susan River d/s of Paiute Creek	
		Mercury Nickel
		PCBs
	Susan River u/s of Susanville	1020
		Mercury
		Nickel
	Tahoe Keys Sailing Lagoon	
		PCBs
		Toxaphene
	Taylor Creek	
		Pesticides (8 different compounds)
	Truckee River	
		Chloride
	H 1 (-1 H. 11 V-11 C 1)	TDS
	Unnamed creek (aka Hidden Valley Creek)	
		Chloride Phosphorus
	Upper Angora Lake	Thosphorus
	Opper Angola Lake	Pesticides (16 different compounds)
8		r
O		
	Anaheim Bay	
		Reviewed data from Coastal Fish Contamination Program (CFCP),
		Orange County PFRD/tissue and
		water/fish consumption, human health
	Bolsa Chica	

	Orange County PFRD data for metals, beach postings/water/human health
Chino Creek	
	Reviewed water quality data from Orange County Water District
Cucamonga Creek	
	Reviewed water quality data from Orange County Water District
Huntington Harbor	
	Orange County PFRD data for metals, State Mussel Watch Program data for pesticides, organics/water and tissue/fish consumption
Little Corona Beach	*
	Bacteria
Mill Creek (Prado Area)	
	Reviewed water quality data from Orange County Water District
Ocean Waters	
	Reviewed data from Coastal Fish Contamination Program
San Jacinto River North Fork (Reach 7)	
	Reviewed water quality data from Lake Hemet Municipal Water District
San Jacinto River South Fork (Reach 7)	
	Reviewed water quality data from Lake Hemet Municipal Water District
Santa Ana River (Reaches 4 and 5)	D i I d Ed I G
	Reviewed water quality data from Orange County Water District
Strawberry Creek	
	Reviewed water quality data from Lake Hemet Municipal Water District
Temescal Creek	
	Reviewed water quality data from Orange County Water District
Agua Hedionda Creek	
	Benthic community degradation
	Eutrophication Incised channel
Agua Hedionda Lagoon	
- -	Caulerpa taxifolia
	Copper (dissolved)
Aliso Creek	Selenium
MISO CICER	Chlordane
	Cucamonga Creek Huntington Harbor Little Corona Beach Mill Creek (Prado Area) Ocean Waters San Jacinto River North Fork (Reach 7) San Jacinto River South Fork (Reach 7) Santa Ana River (Reaches 4 and 5) Strawberry Creek Temescal Creek Agua Hedionda Creek

gion	Water Body	Pollutant/Stressor
		Dieldrin
		Heptachlorepoxide
		PCB
	Alvarado Creek	
		Benthic community degradation
		Eutrophication
		Sedimentation/Siltation
		Trash
	Beach and Bay Shorelines displaying a Permanent Health Risk sign	
		Unknown constituents that may effect human health
	Boulder Creek	
		Exotic vegetation (Tamarisk sp.)
		Hydromodification (scour from reservoir release)
	Buena Vista Creek	
		Benthic community degradation Eutrophication
	Chocolate Creek	Luttopineation
	Chocoluc Crook	Eutrophication
		Sedimentation/Siltation
	Chollas Creek	Seamenation on attori
		Total chlordane
		Total PCB
		Trash
		Turbidity
	Cloverdale Creek	
		Eutrophication
		Sedimentation/Siltation
	Cottonwood Creek	
		Diazinon
		Eutrophication
		Exotic vegetation (Tamarisk sp.)
		Hydromodification (scour from
	Daluz Craal:	reservoir release)
	Deluz Creek	C16-4-
		Sulfate Total dissalved solids
	Delzura Creek	Total dissolved solids
	Deizura Creek	Erosion
		Eutrophication Incised channel
		Sedimentation/Siltation
	Encinitas Creek	
		Diazinon
		Eutrophication
		Malathion

ion	Water Body	Pollutant/Stressor
	Escondido Creek	
	Escondido Creek	Benthic community degradation
		Diazinon
		Eutrophication
		Sulfate
		Total dissolved solids
	Fallbrook Creek	
		Iron
		Manganese
		Phosphorus
	Famosa Slough	
		Dieldrin
		Total chlordane
		Total DDT
		Total PCB
	Forrester Creek	Tour LCB
	Torrester Creek	Eutrophication
		Trash
	Green Valley Creek	110311
	Green valley Creek	D4hi
		Benthic community degradation Eutrophication
		Phosphorus Sedimentation/Siltation
		Trash
	Hatfield Creek	Hasn
	Hatticia Cicck	Protocophication
		Eutrophication
	Vin a Charle	Incised channel
	King Creek	
		Eutrophication
	Laguna Lakes	
		Bacterial indicators
	Lake Hodges	
		MTBE
	Loma Alta Creek	
		Benthic community degradation
		Eutrophication
	Los Penasquitos Creek	
		Sedimentation/Siltation
	Lower Otay Reservoir	
	•	Color
		Odor
	Miramar Reservoir	
	1711411141 110001 1011	Bromodichloromethane
		Chlorodibromomethane
		Chloroform
		Total dissolved solids
		i otai dissolved sollus

ion	Water Body	Pollutant/Stressor
		Bromodichloromethane
		Chloride
		Chloroform
		Dibromochloromethane
		Phosphorus
		Sodium
		Sulfate
	Murrieta Creek	
		Iron
		Manganese
		Total dissolved solids
	Oceanside Harbor	
		Copper (dissolved)
	Oso Creek	
		Chloride
		Phosphorus
		Sulfate
		Total dissolved solids
		Turbidity
	Pacific Ocean Shoreline (Coronado Beach)	
		Bacterial indicators
	Pacific Ocean Shoreline (Emerald Bay)	
		Bacterial indicators
	Padre Barona Creek	Buccertal indicators
	T WALL DWI ON W CITCH	Eutrophication
		Incised channel
	Prima Deshecha Channel	meised channel
	Prima Desnecha Channel	
		Cadmium
		Nickel
	Proctor Valley Creek	
		Trash
	Rainbow Creek	
		Sediment toxicity
		Sulfate
		Total dissolved solids
		Trash
	Reidy Creek	
		Nitrogen
		Phosphorus
	Rose Creek	•
		Sedimentation/Siltation
	San Diego Bay at Mouth of Switzer Creek	Scamenation/Siliation
	San Diego Day at Mouth of Switzer Creek	
		Chlordane
		Lindane
		PAH
	San Diego Bay at America's Cup Harbor	

egion	Water Body	Pollutant/Stressor
	San Diego Bay at B Street Pier	-
	Sun Diego Buy at B Street Fiel	Chlordane
		Lindane
		PAH
	San Diego Bay at Harbor Island (East	1711
	Basin)	
	,	Arsenic
		Cadmium
		Copper (dissolved)
	San Diego Bay at Harbor Island (West Basin)	
		Copper (dissolved)
	San Diego Bay at Laurel Street	
		Arsenic
		Cadmium
		Copper (dissolved)
	San Diego Bay at Marriott Marina	
		Copper (dissolved)
	San Diego Bay at North Island Aircraft Platform	-
		Arsenic
		Cadmium
		Copper (dissolved)
	San Diego Bay at Shelter Island Yacht Harbor	
		Arsenic
		Cadmium
	San Diego Bay at South Bay Power Plant	
		Chlorine
		Thermal warming
		Turbidity
	San Diego River	
		Benthic community degradation
		Benzene
		Chlordane
		Eutrophication
		Exotic vegetation (Water Hyacinth, Arundo sp., Tamarisk sp.)
		Methyl tertiary-butyl ether (MTBE)
		Trash
	San Juan Creek	
		Erosion
		Incised channel
		PCB
	G I : D D:	Sedimentation/Siltation
	San Luis Rey River	
		Calcium
		Eutrophication

egion	Water Body	Pollutant/Stressor
		Magnesium
		Phosphorus
	San Marcos Lake	1
	SWITTING SERVICE	Dissolved oxygen
	San Mateo Creek	Dissolved oxygen
		Introduced (non-native) amphibian species: bullfrogs
		Introduced (non-native) fish species: black bullhead, bluegill, channel catfish, green sunfish, largemouth bass, mosquito fish
		Introduced (non-native) invertebrate species: non-native crayfish
		Introduced (non-native) plant species: saltcedar, other exotic vegetation
		Total dissolved solids
	Sandia Creek	
		Lead
		Sulfate
	Santa Margarita River (entire and tributaries)	
		Sedimentation/Siltation
	Santa Margarita River (Lower)	
		Iron
		Manganese
		Sulfate
		Total dissolved solids
	Santa Margarita River (Upper)	
		Iron
		Manganese
		Sulfate
		Total dissolved solids
	Santa Maria Creek	
		Bacterial indicators
		Exotic vegetation (Tamarisk sp.)
	Santa Ysabel Creek	
		Exotic vegetation (Arundo sp. and Tamarisk sp.)
	Scove Creek	
		Bacterial indicators
		Incised channel
		Nutrients
	Sorrento (Carroll Canyon) Valley Creek	
		Eutrophication
	Sycamore Canyon Creek	
		Eutrophication
		Exotic vegetation (Arundo donax)

Region Water Body		Pollutant/Stressor
		Trash
	Tecolote Creek	
		Sedimentation/Siltation
	Tijuana River Estuary	
		Turbidity

Table 5: Proposed TMDL Priorities and Completion Dates for the 2002 Section 303(d) List

Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
Albion River			
	Sedimentation/Siltation	High	2003
Big River			
6	Sedimentation/Siltation	High	2003
Bodega HU, Estero D	De San		
Antonio/Stemple Cre			
	Nutrients	Medium	
Eel River Delta			
Lor Idivor Doita	Sedimentation/Siltation	Medium	
	Temperature	Medium	
Eel River, Middle Fo			
Dorrar or, milation of	Sedimentation/Siltation	Medium	
	Temperature	Medium	
Eel River, Middle Ma	•	1110414111	
Lei Rivei, Middle Mi	Sedimentation/Siltation	Medium	
	Temperature	Medium	
Eel River, North Fork	•	Wicdiani	
Let River, North For	Sedimentation/Siltation	Medium	
	Temperature	Medium	
Eel River, South Fork		Wicdiani	
Lei Rivei, South For	Sedimentation/Siltation	Medium	
	Temperature	Medium	
Eel River, Upper Mai (Includes Tomki Cree	in	Mediani	
	Sedimentation/Siltation	Medium	
	Temperature	Medium	
Eel River, Upper Mai Tomki Creek	in,		
	Sedimentation/Siltation	Medium	
Garcia River			
	Sedimentation/Siltation	High	2002
Gualala River			
	Sedimentation/Siltation	High	2004
Klamath River HU, L River HA, Clear Lake	Lost	5	
Boles HSA			
Boles HSA	Nutrients	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Klamath River HU, Lost River HA, Tule Lake HSA, Mt. Dome HSA			
		Nutrients	Medium	
		Temperature	Medium	
	Klamath River HU, Lower HA, Klamath Glen HSA			
		Nutrients	Medium	
		Organic enrichment/Low D.O. Temperature	Medium Medium	
	Klamath River HU, Middle and Lower HAs, Orleans HSA, Ukonom HSA, Happy Camp HSA, Seiad HSA			
		Nutrients	Medium	
		Organic enrichment/Low D.O.	Medium Medium	
	Klamath River HU, Middle HA, Beaver Creek HSA, Hornbrook HSA	Temperature	Medium	
		Nutrients	Medium	
		Organic enrichment/Low D.O. Temperature	Medium Medium	
	Klamath River HU, Middle HA, Iron Gate HSA, Copco HSA	Temperature	Wedulii	
		Nutrients	Medium	
		Temperature	Medium	
	Klamath River HU, Salmon River HA			
		Nutrients	Medium	
	Manuala Diana	Temperature	Medium	
	Mattole River	Sedimentation/Siltation	High	2004
		Temperature	High	2004
	Navarro River	1		
		Sedimentation/Siltation	High	2004
		Temperature	High	2004
	Navarro River Delta			
		Sedimentation/Siltation	High	2004
	Noyo River			
	Redwood Creek (Above Redwood National Park Boundary)	Sedimentation/Siltation	High	2003
		Sedimentation/Siltation	Medium	
	Redwood Creek (Below Redwood National Park Boundary)			

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		Sedimentation/Siltation	Medium	
	Scott River			
		Sedimentation/Siltation	Medium	
	-	Temperature	Medium	
	Shasta River			
		Organic enrichment/Low D.O.	Medium	
	Ten Mile River	Temperature	Medium	
	I en Mile River	G 1' 44' /G'144'	TT: 1	2002
	Trinity Divor I ower	Sedimentation/Siltation	High	2003
	Trinity River, Lower	Sadimentation/Siltation	Madium	
	Trinity River, Middle	Sedimentation/Siltation	Medium	
	Tillity River, Middle	Sedimentation/Siltation	Medium	
	Trinity River, South Fork	Sedimentation/Sination	Medium	
	Timity River, South Fork	Sedimentation/Siltation	Medium	
	Trinity River, Upper	Scumentation/Sittation	Medium	
	Timity River, Opper	Sedimentation/Siltation	Medium	
	Van Duzen River (tributary	Scumentation/Sittation	Medium	
	to Eel River)			
	to Let River)	Sedimentation/Siltation	Medium	
2				
	Alameda Creek			
		Diazinon	High	2004
	Alamitos Creek			
		Mercury	Medium	
	Arroyo Corte Madera Del			
	Presidio			
		Diazinon	High	2004
	Arroyo De La Laguna			
		Diazinon	High	2004
	Arroyo Del Valle			
		Diazinon	High	2004
	Arroyo Hondo			
		Diazinon	High	2004
	Butano Creek			
		Sedimentation/Siltation	Medium	
	Calabazas Creek			
	-	Diazinon	High	2004
	Calero Reservoir			
	<u> </u>	Mercury	Medium	
	Carquinez Strait	all 1 (**********************************		
		Chlordane/DDT/Dieldrin	Medium	2004
		Copper Diazinon	High Medium	2004
		Exotic Species	Medium Medium	
		Mercury	High	2002
		Nickel	High	2002
		THEREI	111g11	2004

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		PCBs/PCBs (dioxin-like)	High	2004
	Corte Madera Creek			
		Diazinon	High	2004
	Coyote Creek (Marin County)			
		Diazinon	High	2004
	Coyote Creek (Santa Clara Co.)			
		Diazinon	High	2004
	Gallinas Creek			
		Diazinon	High	2004
	Guadalupe Creek			
	Condaluma Danamain	Mercury	Medium	
	Guadalupe Reservoir	Maraury	Medium	
	Guadalupe River	Mercury	Medium	
	Guadalupe Kivei	Diazinon	High	2004
		Mercury	Medium	2004
	Lagunitas Creek	,		
		Nutrients	Medium	
		Pathogens	Medium	
		Sedimentation/Siltation	Medium	
	Laurel Creek			
		Diazinon	High	2004
	Ledgewood Creek	D	YY: 1	2004
	Lag Catag Craals (D2)	Diazinon	High	2004
	Los Gatos Creek (R2)	Diazinon	High	2004
	Matadero Creek	Diazilion	High	2004
	With the Creek	Diazinon	High	2004
	Miller Creek		<u> </u>	
		Diazinon	High	2004
	Mt. Diablo Creek			
		Diazinon	High	2004
	Napa River			
		Nutrients	Medium	
		Pathogens	Medium	
	Name to Const.	Sedimentation/Siltation	Medium	
	Novato Creek	Diazinon	Uigh	2004
	Permanente Creek	DIAZIIIOII	High	2004
	1 chilaneme Cleek	Diazinon	High	2004
	Pescadero Creek	2 Memon	111911	2001
	1 obcudero Creek	Sedimentation/Siltation	Medium	
	Petaluma River			
		Nutrients	Medium	
		Pathogens	Medium	
		Sedimentation/Siltation	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Pine Creek			
		Diazinon	High	2004
	Pinole Creek			
		Diazinon	High	2004
	Richardson Bay			
		Chlordane/DDT/Dieldrin	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		PCBs/PCBs (dioxin-like)	High	2004
	Rodeo Creek			
		Diazinon	High	2004
	Sacramento San Joaquin			
	Delta			
		Chlordane/DDT/Dieldrin	Medium	
		Copper	High	2004
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		Nickel	High	2004
		PCBs/PCBs (dioxin-like)	High	2004
	San Antonio Creek			
		Diazinon	High	2004
	San Felipe Creek			
	•	Diazinon	High	2004
	San Francisquito Creek		-	
	1	Diazinon	High	2004
		Sedimentation/Siltation	Medium	
	San Gregorio Creek			
		Sedimentation/Siltation	Medium	
	San Leandro Creek			
		Diazinon	High	2004
	San Leandro Creek, Lower		8	
	Sun Leanaro Creek, Lower	Diazinon	High	2004
	San Lorenzo Creek	Diazilion	Iligii	2004
	San Lorenzo Creek	Diazinon	High	2004
	San Mateo Creek	Diazilioli	High	2004
	San Mateo Creek	Diazinon	High	2004
	C D-1.1- D	Diazilioli	High	2004
	San Pablo Bay	CII I (DDT/D: II:) (E	
		Chlordane/DDT/Dieldrin	Medium	2004
		Copper Diazinon	High Medium	2004
			Medium	
		Exotic Species Mercury	Medium High	2002
		Nickel	High High	2002
		PCBs/PCBs (dioxin-like)	High	2004
	San Pablo Creek	1 CD3/1 CD3 (diOXIII-IIAC)	111511	2004
	Sail Faulu Cieek	Diazinon	High	2004
	Con Dofool Cr1-	DIGCHIOH	High	2004
	San Rafael Creek	D	XX: 1	2004
		Diazinon	High	2004

n	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Saratoga Creek			
		Diazinon	High	2004
	SF Bay Central			
	-	Chlordane/DDT/Dieldrin	Medium	
		Copper	High	2004
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		PCBs/PCBs (dioxin-like)	High	2004
	SF Bay Lower			
		Chlordane/DDT/Dieldrin	Medium	
		Copper	High	2004
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		Nickel	High	2004
		PCBs/PCBs (dioxin-like)	High	2004
	SF Bay South			
	,	Chlordane/DDT/Dieldrin	Medium	
		Diazinon	Medium	
		Exotic Species	Medium	
		Mercury	High	2002
		PCBs/PCBs (dioxin-like)	High	2004
	Sonoma Creek		-	
		Nutrients	Medium	
		Pathogens	Medium	
		Sedimentation/Siltation	Medium	
	South San Francisco Bay			
	,	Copper	High	2003
		Nickel	High	2003
	Stevens Creek			
		Diazinon	High	2004
	Suisun Bay	Diazinon	111611	2001
	Suisuii Bay	Chlordane/DDT/Dieldrin	Medium	
			High	2004
		Copper Diazinon	Medium	2004
		Exotic Species	Medium	
		Mercury	High	2002
		Nickel	High	2004
		PCBs/PCBs (dioxin-like)	High	2004
	Suisun Slough	1 CBs/1 CBs (dioxin-like)	High	2004
	Sulsuli Slougii	Diazinon	High	2004
	Tomolog D	Diazilloli	High	2004
	Tomales Bay	M 06:15		
		Mercury (Metals)	Medium	
		Nutrients	Medium	***
		Pathogens	High	2004
		Sedimentation/Siltation	Medium	
	Walker Creek			
		Mercury (Metals)	Medium	
		Nutrients	Medium	

		Sedimentation/Siltation	Medium	
	Walnut Creek			
		Diazinon	High	2004
	Wildcat Creek	p	YY' 1	2004
		Diazinon	High	2004
3				
	Aptos Creek			
	r	Pathogens	Medium	
		Pathogens	Medium	
	Blanco Drain			
		Pesticides	Medium	
	Carbonera Creek			
		Pathogens	Medium	
		Sedimentation/Siltation	High	2003
	Chorro Creek			
		Metals	High	2002
		Metals	High	2002
		Nutrients Sedimentation/Siltation	High	2003 2003
	Clear Creek	Scamentation/Sittation	High	2003
	Cicai Cicck	Mercury	Medium	
	Espinosa Slough	Wicioury	Wicdiani	
	Espinosa Stough	Pesticides	Medium	
		Priority Organics	Medium	
	Hernandez Reservoir	<u>, , , , , , , , , , , , , , , , , , , </u>		
		Mercury	Medium	
		Mercury	Medium	
	Las Tablas Creek			
		Metals	High	2003
	Las Tablas Creek, North			
	Fork			
		Metals	High	2003
	Las Tablas Creek, South			
	Fork			
		Metals	High	2003
	Llagas Creek			
		Nutrients	Medium	
	Lamaia a Caral	Sedimentation/Siltation	Medium	
	Lompico Creek	Dathagana	Medium	
		Pathogens Sedimentation/Siltation	High	2003
	Los Osos Creek	Scamenation/Sittation	111811	2003
	LOS OSOS CICOR	Nutrients	High	2003
		Priority Organics	High	2003
		Sedimentation/Siltation	High	2003
	Monterey Harbor		-	
	iviolitetey mailou			

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Moro Cojo Slough			
	<i>y</i>	Pesticides	Medium	
	Morro Bay			
	,	Metals	Medium	
		Pathogens	High	2004
		Sedimentation/Siltation	High	2003
	Nacimiento Reservoir			
		Metals	High	2003
		Metals	High	2003
	Old Salinas River Estuary			
	,	Nutrients	Medium	
		Pesticides	Medium	
	Pajaro River			
	1 43410 111, 41	Nutrients	Medium	
		Sedimentation/Siltation	Medium	
	Rider Gluch Creek	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	reder Gluen ereek	Sedimentation/Siltation	Medium	
	Salinas Reclamation Canal	Seamentation/Situation	Wicaram	
	Samias Reciamation Canar	Pesticides	Medium	
		Priority Organics	Medium	
		Priority Organics	Medium	
	Salinas River	Thomas Organics	Wediam	
	Salillas Kivei	Nutrients	Medium	
		Pesticides	Medium	
		Sedimentation/Siltation	Medium	
	Salinas River Lagoon	Sedimentation/Sittation	Wicdiani	
	(North)			
	(North)	Nutrients	Medium	
		Pesticides	Medium	
		Sedimentation/Siltation	Medium	
	Salinas River Refuge	Seamentation/Situation	Wicdiani	
	Lagoon (South)			
	Lagoon (South)	Nutrients	Medium	
		Pesticides	Medium	
	San Benito River	1 esticides	Wicdiani	
	San Benno River	Codimentation/Ciltation	Madium	
	G I	Sedimentation/Siltation	Medium	
	San Lorenzo River	- ·		
		Pathogens	Medium	2002
	G I D: E /	Sedimentation/Siltation	High	2003
	San Lorenzo River Estuary			
		Pathogens	Medium	
		Sedimentation/Siltation	High	2003
	San Luis Obispo Creek (Below W. Marsh Street)			
		Nutrients	High	2004
			High	2004
		Pathogens	High	2004
		Pathogens Priority Organics	High	2004 2002
	Schwan Lake	_		

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Shingle Mill Creek			
		Sedimentation/Siltation	High	2003
	Soquel Lagoon		<u> </u>	
	2 - 4	Pathogens	Medium	
		Pathogens	Medium	
	Tembladero Slough			
		Pesticides	Medium	
	Valencia Creek			
		Pathogens	Medium	
		Pathogens	Medium	
	Watsonville Slough			
		Metals	Medium	
		Oil and grease	Medium	
		Pathogens	Medium	
		Pathogens	Medium	
		Sedimentation/Siltation	Medium	
1				
4				
	Abalone Cove Beach			
		Beach Closures	High	2002
	Aliso Canyon Wash			
		Selenium	High	2003
	Arroyo Las Posas Reach 1 (Lewis Somis Rd to Fox Barranca)			
	Burranea)	Ammonia	High	2002
		Chloride	High	2002
		DDT	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
	Arroyo Las Posas Reach 2 (Fox Barranca to Moorpark Fwy (23))			
		Ammonia	High	2002
		Chloride	High	2002
		DDT	Medium	
		Nitrate and Nitrite	High	2002
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
	Arroyo Seco Reach 1 (LA River to West Holly Ave.)			
		Algae	High	2002
	Arroyo Seco Reach 2 (Figueroa St. to Riverside Drive)	High Coliform Count	High	2002
	,	Algae	High	2002
		High Coliform Count	High	2002
		-	-	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Arroyo Simi Reach 1 (Moorpark Frwy (23) to Brea Canyon) and 2			
		Ammonia	High	2002
		Boron	High	2003
		Chloride	High	2002
		Chromium	Medium	
		Nickel	Medium	
		Selenium	Medium	
		Silver	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Zinc	Medium	
	Ashland Avenue Drain			
		High Coliform Count	High	2002
	Ballona Creek			
		Arsenic	High	2003
		Cadmium	High	2003
		Chem A	High	2004
		Chlordane	High	2004
		Copper	High	2003
		DDT	High	2004
		Dieldrin	High	2004
		Enteric Viruses	High	2003
		High Coliform Count	High	2003
		Lead	High	2003
		PCBs	High	2004
		Sediment Toxicity	High	2004
		Silver	High	2003 2003
	Dallana Craak Estuary	Toxicity	High	2003
	Ballona Creek Estuary	Arochlor	High	2004
		Chlordane	High	2004
		DDT	High	2004
		High Coliform Count	High High	2004
		Lead	High High	2003
		PCBs	High	2004
		Sediment Toxicity	High	2004
		Shellfish Harvesting Advisory	High	2003
		Zinc	High	2003
	Ballona Creek Wetlands			
		Arsenic	High	2003
	Beardsley Channel (Above Central Avenue)			
		Algae	High	2002
		Chem A	Medium	
		Chlordane	Medium	
		Chlorpyrifos	High	2003
		Dacthal	Medium	
		DDT	Medium	
		Dieldrin	Medium	

Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Endosulfan	Medium	
	Nitrogen	High	2002
	PCBs	Medium	
	Toxaphene	Medium	
	Toxicity	High	2004
Bell Creek			
	High Coliform Count	High	2002
Big Rock Beach			
C	Beach Closures	High	2002
	High Coliform Count		2002
Bluff Cove Beach			
	Beach Closures	High	2002
Brown Barranca/Long			
_			
Curryon	Nitrate and Nitrite	High	2003
Rurhank Western Channel		8	2003
Burbank Western Chamier	Algaa	Uigh	2002
	-		2002
			2002
			2003
			2002
Cabrillo Beach (Inner) LA	Scan Touri amatara	IIIgii	2002
Harbor Area	Reach Closures (Coliform)	High	2003
		-	2003
Cabrillo Reach (Outer)	T C D 3	Wearam	
Caomio Beach (Outer)	Booch Clasures	High	2002
		-	2002
Callagrass Create Decah 1	riigii Comorni Count	High	2002
and 2 (Estuary to Potrero Rd.)			
	Chem A	Medium	
	Chlordane	Medium	
	DDT	Medium	
	Endosulfan	Medium	
	Nitrogen	High	2002
	PCBs	Medium	
	Sediment Toxicity	Medium	
	Toxicity	High	2004
Calleguas Creek Reach 1 and 2Estuary to Potrero Rd.)			
	Ammonia	High	2002
Calleguas Creek Reach 3 (Potrero to Somis Rd.)			
	Chloride	High	2002
			2002
	Total Dissolved Solids		2003
Carbon Beach		<i>5</i> -	
	Beach Closures	High	2002
	Deach Ciosures	111511	2002
	Bell Creek Big Rock Beach Bluff Cove Beach Brown Barranca/Long Canyon Burbank Western Channel Cabrillo Beach (Inner) LA Harbor Area Cabrillo Beach (Outer) Calleguas Creek Reach 1 and 2 (Estuary to Potrero Rd.) Calleguas Creek Reach 1 and 2Estuary to Potrero Rd.)	Endosulfan Nitrogen PCBs Toxaphene Toxicity Bell Creek High Coliform Count Big Rock Beach Beach Closures High Coliform Count Bluff Cove Beach Beach Closures Brown Barranca/Long Canyon Nitrate and Nitrite Burbank Western Channel Algae Ammonia Cadmium Odors Scum/Foam-unnatural Cabrillo Beach (Inner) LA Harbor Area Beach Closures (Coliform) DDT PCBs Cabrillo Beach (Outer) Beach Closures High Colirom Count Calleguas Creek Reach 1 and 2 (Estuary to Potrero Rd.) Chem A Chlordane DDT Endosulfan Nitrogen PCBs Sediment Toxicity Toxicity Calleguas Creek Reach 1 and 2 Estuary to Potrero Rd.) Calleguas Creek Reach 1 and 2 Estuary to Potrero Rd.) Calleguas Creek Reach 1 and 2 Estuary to Potrero Rd.) Choride Nitrate and Nitrite Total Dissolved Solids	Endosulfan Medium Nitrogen High PCBs Medium Toxaphene Medium Toxicity High Bell Creek High Coliform Count High Big Rock Beach Beach Closures High High Coliform Count High Bluff Cove Beach High Coliform Count High Brown Barranca/Long Canyon Nitrate and Nitrite High Mammonia High Cadmium High Odors High Odors High Cadmium High Odors High Cabrillo Beach (Inner) LA Harbor Area Beach Closures (Coliform) Medium PCBs Medium High Calleguas Creek Reach I and 2 (Estuary to Potrero Rd.) Calleguas Creek Reach I and 2 Estuary to Potrero Rd.) Endosulfan Medium Medium Nitrogen High PCBs Medium Calleguas Creek Reach I and 2 Estuary to Potrero Rd.) Calleguas Creek Reach I and 2 Estuary to Potrero Rd.) Calleguas Creek Reach I and 2 Estuary to Potrero Rd.) Calleguas Creek Reach I and 2 Estuary to Potrero Rd.) Calleguas Creek Reach I and 2 Estuary to Potrero Rd.) Calleguas Creek Reach I and 2 Estuary to Potrero Rd.) Calleguas Creek Reach I and 2 Estuary to Potrero Rd.) Calleguas Creek Reach I and 2 Estuary to Potrero Rd.)

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Castlerock Beach			
		Beach Closures	High	2002
	Channel Islands Harbor			
		Lead	Medium	
		Zinc	Medium	
	Colorado Lagoon			
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Chlordane	Medium	
		DDT	Medium	
		Dieldrin	Medium	
		Lead	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
		Zinc	Medium	
	Compton Creek			
	•	Copper	High	2003
		High Coliform Count	High	2002
		Lead	High	2003
		рН	High	2002
	Conejo Creek Reach 1 (Confluence Call to Santa			
	Rosa Rd.)			
		Algae	High	2002
		Ammonia	High	2002
		Cadmium	Medium	
		Chromium	Medium	
		Nickel	Medium	
		Organic enrichment/Low D.O.	High	2002
		Silver	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Toxicity	High	2004
	Conejo Creek Reach 2			
	(Santa Rosa Rd. to			
	Thousand Oaks City Limit			
		Cadmium	Medium	
		Chloride	High	2002
		Chromium	Medium	
		Nickel	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Toxaphene	Medium	2004
	Conejo Creek Reach 2 (Santa Rosa Rd. to Thousand Oaks City Limit)	Toxicity	High	2004
	,	Algae	High	2002
		Ammonia	High	2002
		Organic enrichment/Low D.O.	High	2002
		Silver	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Conejo Creek Reach 3 (Thousand Oaks City Limit to Lynn Rd.)			
		Algae	High	2002
		Ammonia	High	2002
		Chem A	Medium	
		Dacthal	Medium	
		DDT	Medium	
		Endosulfan	Medium	
		Organic enrichment/Low D.O.	High	2002
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Toxaphene	Medium	
		Toxicity	High	2004
	Conejo Creek Reach 3 (Thousand Oaks City Limit) to Lynn Rd.)			
	vo 2511111 1 1.)	Cadmium	Medium	
		Chromium	Medium	
		Nickel	Medium	
		Silver	Medium	
	Conejo Creek Reach 4 (Above Lynn Rd.)			
		Algae	High	2002
		Ammonia	High	2002
		Chem A	Medium	
		Chloride	High	2002
		Dacthal	Medium	
		DDT	Medium	
		Endosulfan	Medium	
		Organic enrichment/Low D.O.	High	2002
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
		Toxaphene	Medium	
		Toxicity	High	2004
	Conejo Creek/Arroyo Conejo North Fork			
		Ammonia	High	2002
		Chlordane	Medium	
		DDT	Medium	
		Sulfates	High	2003
		Total Dissolved Solids	High	2003
	Coyote Creek	Abnormal Fish Histology	Medium	
		Algae	High	2003
		Ammonia	High	2003
		High Coliform Count	High	2003
		Silver	Medium	
	Crystal Lake			

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
	Dan Blocker Memorial			
	(Coral) Beach			
		High Coliform Count	High	2002
	Dockweiler Beach			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Dominguez Channel (above Vermont)		-	
	•	Aldrin	Medium	
		Ammonia	Medium	
		Chem A	Medium	
		Chlordane	Medium	
		Chromium	Medium	
		Copper	Medium	
		DDT	Medium	
		Dieldrin	Medium	
		High Coliform Count	High	2002
		Lead	Medium	
		PAHs	Medium	
		PCBs	Medium	
	Dominguez Channel			
	(Estuary to Vermont)			
		Aldrin	Medium	
		Ammonia	Medium	
		Benthic Community Effects	Medium	
		Chem A	Medium	
		Chlordane	Medium	
		Chromium	Medium	
		Copper	Medium	
		DDT	Medium	
		Dieldrin	Medium	2002
		High Coliform Count	High	2002
		Lead PAHs	Medium Medium	
		PCBs	Medium	
		Zinc	Medium	
	Duck Pond Agricultural Drains/Mugu Drain/Oxnard Drain No. 2	Zinc	Medidiii	
	214m 1.0. 2	Chem A	Medium	
		Nitrogen	High	2002
		Toxicity	High	2002
	Duck Pond Agricultural Drains/Mugu Drain/Oxnard Drain No. 3		111911	2007
		Chlordane	Medium	
	Duck Pond Agricultural Drains/Mugu Drain/Oxnard Drain No. 4			
		DDT	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Duck Pond Agricultural			
	Drains/Mugu Drain/Oxnard			
	Drain No. 5			
		Sediment Toxicity	Medium	
	Duck Pond Agricultural			
	Drains/Mugu Drain/Oxnard			
	Drain No. 6			
		Toxaphene	Medium	
	El Dorado Lakes			
		Algae	Medium	
		Ammonia	Medium	
		Copper	Medium	
		Eutrophic	Medium	
		Lead	Medium Medium	
		Mercury	Medium	
	Elizabeth Lake	рН	Medium	
	Elizabeth Lake	P) (''	
		Eutrophic	Medium Medium	
		Organic enrichment/Low D.O. pH	Medium	
		Trash	Medium	
	Escondido Beach	Hasii	Wicdiani	
	Escondido Beach	Beach Closures	Lligh	2002
	Flat Rock Point Beach Area	Beach Closures	High	2002
	riat Rock Foilit Beach Alea	Decelo Classica	TT: _1.	2002
	Fox Barranca	Beach Closures	High	2002
	rox Barranca	D	TT: 1	2002
		Boron Nitrate and Nitrite	High	2003 2002
		Sulfates	High High	2002
		Total Dissolved Solids	High	2003
	Hermosa Beach	Total Dissolved Solids	Iligii	2003
	Heimosa Beach	Donah Clasuras	High	2002
	In an institute Design Design	Beach Closures	High	2002
	Inspiration Point Beach	D. J.Cl	TT: 1	2002
	L. C. d. D. 1	Beach Closures	High	2002
	La Costa Beach	D. I. Cl	*** *	
	T A D' 1 77 1	Beach Closures	High	2002
	LA Fish Harbor			
		DDT	Medium	
		PAHs	Medium	
	TAIL 1 C PILL 1CT	PCBs	Medium	
	LA Harbor Consolidated Slip			
		Benthic Community Effects	Medium	
		Chlordane	Medium	
		Chromium	Medium	
		DDT	Medium	
		Lead	Medium	
		PAHs	Medium	
		PCBs	Medium	

n	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		Zinc	Medium	
	LA Harbor Inner Breakwate	er		
		DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
	LA Harbor Main Channel			
		Beach Closures	High	2003
		Copper	Medium	
		DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
		Zinc	Medium	
	LA Harbor Southwest Slip			
		DDT	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
	Lake Calabasas			
		Copper	Medium	
		Zinc	Medium	
	Lake Hughes			
	24.10 1148.100	Algae	Medium	
		Eutrophic	Medium	
		Fish Kills	Medium	
		Odors	Medium	
		Trash	Medium	
	Lake Lindero			
	Eake Emdero	Algae	High	2002
		Eutrophic	High	2002
		Odors	High	2002
		Selenium	Medium	2002
		Trash	Medium	
	Lake Sherwood	110011	modium	
	Lake Shelwood	Alexa	TT: -1.	2002
		Algae Ammonia	High High	2002 2002
		Eutrophic	High	2002
		Mercury	Medium	2002
		Organic enrichment/Low D.O.	High	2002
	Las Flores Beach	Organic chrichment/Low D.O.	High	2002
	Las Flores Beach	Tr. L. C. L.C.	TT: 1	2002
		High Coliform Count	High	2002
	Las Tunas Beach			
		Beach Closures	High	2002
	Las Virgenes Creek			
		High Coliform Count	High	2002
		Nutrients (Algae)	High	2002
		Organic enrichment/Low D.O.	High	2002
		Scum/Foam-unnatural	High	2002
		Selenium	Medium	
		Trash	Medium	

Legg Lake

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		Ammonia	Medium	
		Copper	Medium	
		Lead	Medium	
		Odors	Medium	
		pН	Medium	
	Leo Carillo Beach (South of County Line)	•		
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Lindero Creek Reach 1			
		Algae	High	2002
		High Coliform Count	High	2002
		Selenium	Medium	
		Trash	Medium	
	Lindero Creek Reach 2			
		Scum/Foam-unnatural	High	2002
	Lindero Creek Reach 2 (Above Lake)			
		Algae	High	2002
		High Coliform Count	High	2002
		Scum/Foam-unnatural	High	2002
		Selenium	Medium	
		Trash	Medium	
	Long Beach Harbor Main Channel, SE, W Basin, Pier J, Breakwater			
	•	Benthic Community Effects	Medium	
		DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
	Long Point Beach	•		
	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Beach Closures	High	2002
		High Coliform Count	High	2002
	Los Angeles River Reach 1 (Estuary to Carson Street)			
		Ammonia	High	2002
		High Coliform Count	High	2002
		Lead	High	2003
		Nutrients (Algae)	High	2002
		pH	High	2002
		Scum/Foam-unnatural	High	2002
	Los Angeles River Reach 2 (Carson to Figueroa Street)			
		Ammonia	High	2002
		High Coliform Count	High	2002
		Lead	High	2003
		Nutrients (Algae)	High	2002
		Odors	High	2002

egion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Los Angeles River Reach 3 (Figueroa St. to Riverside Drive)			
		Ammonia	High	2002
		Nutrients (Algae)	High	2002
		Odors	High	2002
		Scum/Foam-unnatural	High	2002
	Los Angeles River Reach 4 (Sepulveda Drive to Sepulveda Dam)			
		Ammonia	High	2002
		High Coliform Count	High	2002
		Lead	High	2003
		Nutrients (Algae)	High	2002
		Odors	High	2002
		Scum/Foam-unnatural	High	2002
	Los Angeles River Reach 5 (at Sepulveda Basin)			
		Ammonia	High	2002
		Chem A	Medium	
		Nutrients (Algae)	High	2002
		Odors	High	2002
		Scum/Foam-unnatural	High	2002
	Los Angeles River Reach 6 (Above Sepulveda Flood Control Basin)			
	Los Cerritos Channel	High Coliform Count	High	2002
		Ammonia	Medium	
		Copper	Medium	
		High Coliform Count	Medium	
		Lead	Medium	
		Zinc	Medium	
	Machado Lake (Harbor Park Lake)			
		Chem A	Medium	
	<u> </u>	Trash	Medium	
	Malaga Cove Beach			
	-	Beach Closures	High	2002
	Malibu Beach		-	
		Beach Closures	High	2002
	Malibu Creek		8	
	Mandu Cicck	High Californ Count	High	2002
		High Coliform Count	High	2002
		Nutrients (Algae)	High	2002
		Scum/Foam-unnatural	High	2002
	N. 17. T	Trash	Medium	
	Malibu Lagoon			
		Enteric Viruses	High	2002
		Eutrophic High Coliform Count	High High	2002

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		Shellfish Harvesting Advisory	High	2002
		Swimming Restrictions	High	2002
	Malibu Lagoon Beach (Surfrider)			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Malibu Lake			
		Algae	High	2002
		Copper	Medium	
		Eutrophic	High	2002
		Organic enrichment/Low D.O.	High	2002
	Mandalay Beach			
	•	Beach Closures	High	2002
	Manhattan Beach			
		Beach Closures	High	2002
	Marina del Rey Harbor - Back Basins		<u> </u>	
	Buck Bushis	Benthic Community Effects	High	2004
		Chlordane	High	2004
		Copper	High	2004
		DDT	High	2004
		Dieldrin	High	2004
		Fish Consumption Advisory	High	2004
		High Coliform Count	High	2003
		Lead	High	2004
		PCBs	High	2004
		Sediment Toxicity	High	2004
		Zinc	High	2004
	Marina del Rey Harbor Beach		8	
		Beach Closures	High	2003
		High Coliform Count	High	2003
	McGrath Beach			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	McGrath Lake (Estuary)			
	(3)	Chlordane	Medium	
		DDT	Medium	
		Pesticides	Medium	
		Sediment Toxicity	Medium	
	Medea Creek Reach 1 (Lake to Confluence with Lindero)	,		
		Algae	High	2002
		High Coliform Count	High	2002
		Selenium	Medium	2002
		Trash	Medium	
	Medea Creek Reach 2			
	(Above Confluence with			
	Lindero)			
	Linucioj	Alana	High	2002
		Algae	High	2002

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		High Coliform Count	High	2002
		Selenium	Medium	
	-	Trash	Medium	
	Mint Canyon Creek Reach (Confluence to Rowler Canyon)			
		Nitrate and Nitrite	High	2003
	Monrovia Canyon Creek	Lead	High	2003
	Moorpark Fwy	Lead	High	2003
	Woorpark I wy	Organic enrichment/Low D.O.	Medium	
		PCBs	Medium	
	Mugu Lagoon	1020		
	Maga Eagoon	Chlordane	Medium	
		Copper	Medium	
		Dacthal	Medium	
		DDT	Medium	
		Endosulfan	Medium	
		Mercury	Medium	
		Nickel	Medium	
		Nitrogen	High	2002
		PCBs	Medium	
		Sediment Toxicity	Medium	
		Sedimentation/Siltation	Medium	
	M I I	Zinc	Medium	
	Munz Lake	- ·		
		Eutrophic	Medium	
	N. 1 1 C D 1	Trash	Medium	
	Nicholas Canyon Beach	D 1 C	*** 1	2002
		Beach Closures	High	2002
	Palo Comado Creek			
		High Coliform Count	High	2002
	Palo Verde Shoreline Park Beach			
		Pathogens	High	2002
	Paradise Cove Beach			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Pico Kenter Drain			
		Copper	Medium	
		Enteric Viruses	High	2002
		High Coliform Count	High	2002
		Lead	Medium	
		Toxicity	Medium	
	Point Dume Beach			
		Beach Closures	High	2002
	Point Fermin Park Beach			
		Beach Closures	High	2002
	Point Vicente Beach			

egion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		Beach Closures	High	2002
	Port Hueneme Harbor			
		Chlordane	Medium	
		DDT	Medium	
		Dieldrin	Medium	
		PCBs	Medium	
	Port Hueneme Harbor (Back Basins)	5		
		DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Tributyltin	Medium	
		Zinc	Medium	
	Portuguese Bend Beach			
	C	Beach Closures	High	2002
	Puddingstone Reservoir		<u> </u>	
		Chlordane	Medium	
		DDT	Medium	
		Mercury	Medium	
	Puerco Beach		2.22 02.02.2	
	r deree Beden	Beach Closures	High	2002
	Redondo Beach	Beach Closures	mgn	2002
	Redolido Beach	Beach Closures	Uigh	2002
		High Coliform Count	High	2002
	Resort Point Beach	riigii Comorni Count	High	2002
	Resolt Point Beach	Beach Closures	High	2002
	Revolon Slough Main	Beach Closures	High	2002
	Branch (Mugu Lagoon to Central Avenue)			
		Algae	High	2002
		Chem A	Medium	
		Chlordane	Medium	
		Chlorpyrifos	High	2004
		Dacthal	Medium	
		DDT	Medium	
		Dieldrin	Medium	
		Endosulfan	Medium	
		Nitrogen	High	2002
		PCBs	Medium	
		Selenium	Medium	
		Toxaphene	Medium	
		Toxicity	High	2004
	Rio De Santa Clara/Oxnard Drain No. 3			
		Chlordane	Medium	
	Rio De Santa Clara/Oxnard Drain No. 3			
		Chem A	Medium	
		DDT	M E	
		DDT	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Dat
		PCBs	Medium	
		Sediment Toxicity	Medium	
		Toxaphene	Medium	
	Rio Hondo Reach 1			
	(Confluence LA River to			
	Santa Ana Fwy)			
		Ammonia	High	2002
		Copper	High	2003
		High Coliform Count	High	2002
		Lead	High	2003
		pH	High	2002
		Zinc	High	2003
	Rio Hondo Reach 2 (At Spreading Grounds)			
		Ammonia	High	2002
		High Coliform Count	High	2002
	Robert H. Meyer Memorial Beach			
		Beach Closures	High	2002
	Rocky Point Beach			
	,	Beach Closures	High	2002
	Royal Palms Beach			
		Beach Closures	High	2002
	San Gabriel River Estuary		<u> </u>	
	Sun Guerrer River Estaury	Abnormal Fish Histology	Medium	
		Arsenic	Medium	
	San Gabriel River Reach 1	111001110	1110010111	
	(Estuary to Firestone)			
	(Estuary to 1 hestone)	Abnormal Fish Histology	Medium	
		Algae	High	2003
		Ammonia	High	2003
		High Coliform Count	High	2003
		Toxicity	High	2003
	San Gabriel River Reach 2		<u> </u>	
	(Firestone to Whittier			
	Narrows Dam)			
	runows Dum)	Ammonia	High	2003
		High Coliform Count	High	2003
		Lead	Medium	2003
	San Gabriel River Reach 3 (Whittier Narrows to Ramona)			
		Toxicity	High	2003
	San Gabriel River, East Fork		0**	2000
	San Gaoriei River, East Polk	Algae	High	2003
		Ammonia	High	2003
		High Coliform Count	High	2003
		riigii Comoini Count	mgn	2003

gion	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	San Jose Creek Reach 2 (Temple to I-10 at White Ave.)			
		Algae	High	2003
		Ammonia	High	2003
		High Coliform Count	High	2003
	San Pedro Bay Near/Off Shore Zones - Cabrillo Pier Area			
		DDT	Medium	
		PAHs	Medium	
		PCBs	Medium	
		Sediment Toxicity	Medium	
	Santa Clara River Estuary			
	•	Chem A	Medium	
		High Coliform Count	Medium	
		Toxaphene	Medium	
	Santa Clara River Estuary Beach-Surfers Knoll			
		High Coliform Count	High	2002
	Santa Clara River Reach 3 (Dam to Above Sp Creek/Blw Timber Canyon)			
	- ,	Ammonia	High	2003
		Chloride	High	2002
	Santa Clara River Reach 7 (Blue Cut to West Pier Hwy 99)			
		Ammonia	High	2003
		Chloride	High	2002
		High Coliform Count	Medium	
	Santa Clara River Reach 8 (W Pier Hwy 99 to Bouquet Canyon Rd.)			
		Ammonia	High	2003
		Chloride	High	2002
		High Coliform Count	Medium	
		Nitrate and Nitrite	High	2003
		Organic enrichment/Low D.O.	High	2003
	Santa Clara River Reach 9 (Bouquet Canyon Rd. to above Lang Gag)			
		High Coliform Count	Medium	
	Santa Fe Dam Park Lake			
		Copper	Medium	
		Lead	Medium	
		pH	Medium	
	Santa Monica Bay			
	Offshore/Nearshore			

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
		Cadmium	High	2004
		Chlordane	Medium	
		Copper	High	2004
		Lead	High	2004
		Mercury	High	2004
		Nickel	High	2004
		Silver	High	2004
		Zinc	High	2004
	Santa Monica Beach			
	Summer Death	Beach Closures	High	2002
		High Coliform Count	High	2002
	Santa Manias Canasa	riigii Comorni Count	High	2002
	Santa Monica Canyon			
		High Coliform Count	High	2002
		Lead	Medium	
	Sea Level Beach			
		Beach Closures	High	2002
	Sepulveda Canyon			
	1	High Coliform Count	High	2002
		Lead	Medium	
	Stokes Creek	2000	1110010111	
	Stokes Cleek	II. I C I.C. C	TT: 1	2002
		High Coliform Count	High	2002
	Tapo Canyon Reach 1			
		Boron	High	2003
		Chloride	High	2002
	Tapo Canyon Reach 2			
		Sulfates	High	2003
	Tapo Canyon Reach 3			
	· up · · · · · · · · · · · · · · · · · ·	Total Dissolved Solids	High	2003
	Topanga Beach	Total Bissolved Solids	ing.	2003
	Topanga Beach	D. I. Cl	TT: 1	2002
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Topanga Canyon Creek			
		Lead	Medium	
	Torrance Beach			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Torrance Carson Channel			
	TOTALIO CARBON CHAMING	Copper	Medium	
		High Coliform Count	High	2002
		Lead	Medium	2002
	Tamas Canada Casala	Lead	Wicdiani	
	Torrey Canyon Creek	377	*** 1	2002
		Nitrate and Nitrite	High	2003
	Trancas Beach (Broad Beach)			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Triunfo Canvon Creek	riigii comoini count	6	
	Triunfo Canyon Creek Reach 1	Lead	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Triunfo Canyon Creek Reach 2			
		Lead	Medium	
		Mercury	Medium	
	Triunfo Canyon Creek Reach 3			
		Mercury	Medium	
	Tujunga Wash (LA River to Hansen Dam)			
	,	Ammonia	High	2002
		Copper	High	2003
		High Coliform Count	High	2002
		Odors	High	2002
		Scum/Foam-unnatural	High	2002
	Venice Beach			
		Beach Closures	High	2002
		High Coliform Count	High	2002
	Ventura Harbor: Ventura Keys			
		High Coliform Count	Medium	
	Ventura River Estuary			
	Ţ	Algae	Medium	
		DDT	Medium	
		Eutrophic	Medium	
		Trash	Medium	
	Ventura River Reach 1 and 2 (Estuary to Weldon Canyon)			
	,		Medium	
		Algae	Medium	
		Copper	Medium	
		Selenium	Medium	
		Silver	Medium	
		Zinc	Medium	
	Ventura River Reach 3 (Weldon Canyon to Confluence w/ Coyote Creek)			
	/	Pumping	Medium	
		Water Diversion	Medium	
	Ventura River Reach 4 (Coyote Creek to Camino Cielo Rd)			
	-	Pumping	Medium	
		Water Diversion	Medium	
	Verdugo Wash Reach 1 (LA River to Verdugo Rd.)			
		Algae High Coliform Count	High	2002

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Verdugo Wash Reach 2			
	(Above Verdugo Road)			
		Algae	High	2002
		High Coliform Count	High	2002
	Walnut Creek Wash (Drains			
	from Puddingstone Res)			
		рН	High	2003
		Toxicity	High	2003
	Westlake Lake			
		Algae	High	2002
		Ammonia	High	2002
		Copper	Medium	
		Eutrophic	High	2002
		Lead	Medium	
		Organic enrichment/Low D.O.	High	2002
	Wheeler Canyon/Todd Barranca			
		Nitrate and Nitrite	High	2003
	Whites Point Beach			
	The state of the s	Beach Closures	High	2002
	Will Rogers Beach		8	
	Will Rogers Beach	Beach Closures	High	2002
		High Coliform Count	High	2002
	Wilmington Drain	Tilgii Comonii Count	Ingii	2002
	S	Ammonia	Medium	
		Copper	Medium	
		High Coliform Count	High	2002
		Lead	Medium	
	Zuma Beach (Westward Beach)			
	Beach)	Beach Closures	High	2002
		Beach Closures	Tilgii	2002
5				
	Arcade Creek			
		Chlorpyrifos	High	2003
		Diazinon	High	2003
	Cache Creek			
		Mercury	High	2004
	Cache Creek, Lower			
	,	Mercury	Medium	
	Chicken Ranch Slough	-		
	2 . 2.0 8	Chlorpyrifos	High	2003
		Diazinon	High	2003
	Clear Lake		0	2003
	Cicui Lunc	Mercury	High	2003
		Mercury	Medium	2003
	Elder Creek	ivicicui y	ivicululli	
	DIUCI CIECK	Ch1	TT: -1.	2002
		Chlorpyrifos Diazinon	High High	2003 2003

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Elk Grove Creek			
		Diazinon	High	2003
	Feather River, Lower			
	,	Diazinon	High	2003
		Diazinon	Medium	
	Merced River			
		Chlorpyrifos/Diazinon	Medium	
	Morrison Creek			
		Diazinon	High	2003
	Natomas East Main			
	Drainage Canal			
		Diazinon	High	2003
	Sacramento Delta Waterway	S		
		Chlorpyrifos	Medium	
		Diazinon	Medium	
		Mercury	High	2004
		Mercury	Medium	
		Organic Enrichment/ Low D.O.	High	2004
	Sacramento River (Red Bluff to Delta)			
		Mercury	Medium	
	Sacramento River, Red Bluff Delta	ſ		
		Diazinon	High	2003
	Sacramento River, Red Bluff to Delta	f		
		Diazinon	Medium	
	Sacramento River, Shasta Dam to Red Bluff			
		Cadmium	High	2002
		Copper	High	2002
		Zinc	High	2002
	San Joaquin River			
		Boron	High	2003
		Chlorpyrifos	High	2003
		Chlorpyrifos	Medium	
		Diazinon	High	2003
		Diazinon	Medium	
		Electrical Conductivity	High	2003
	Stanislaus River			
		Chlorpyrifos/Diazinon	Medium	
	Strong Ranch Slough			
		Chlorpyrifos	High	2003
		Diazinon	High	2003
	Sulphur Creek			
		Mercury	High	2004
		Mercury	Medium	
	Tuolumne River			
		Chlorpyrifos/Diazinon	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
6				
	Bear Creek			
		Sedimentation/Siltation	Medium	
	Blackwood Creek			
		Sedimentation/Siltation	Medium	
	Bodie Creek			
		Metals	Medium	
	Bridgeport Reservoir	NY . T .		
		Nutrients Sedimentation/Siltation	Medium Medium	
	Bronco Creek	Scumentation/Sittation	Medium	
	Dioneo Cicek	Sedimentation/Siltation	Medium	
	Cinder Cone Springs	godinion grandin	1110414111	
	Times Time Springs	Nutrients	Medium	
		Salinity/TDS/Chlorides	Medium	
	Clearwater Creek			
		Sedimentation/Siltation	Medium	
	Crowley Lake			
		Arsenic	Medium	
		Nutrients	Medium	
	Gray Creek			
	Constant Valley Laborate	Sedimentation/Siltation	Medium	
	Green Valley Lake Creek	Designity Organica	Medium	
	Haiwee Reservoir	Priority Organics	Medium	
	Harwee Reservon	Copper	High	2003
	Horseshoe Lake (2)	Сорры	111811	2003
	Horseshoe Eune (2)	Sedimentation/Siltation	Medium	
	Hot Springs Canyon			
	1 5 3	Sedimentation/Siltation	Medium	
	Indian Creek Reservoir			
		Nutrients	High	2002
	Lake Tahoe			
		Nutrients	Medium	
		Sedimentation/Siltation	Medium	
	Pleasant Valley Reservoir			
	<u></u>	Organic enrichment/Low D.O.	Medium	
	Skedaddle Creek	W. L. Q. F.C.) (I'	
	Squaw Creek	High Coliform Count	Medium	
	Squaw Creek	Sedimentation/Siltation	Madium	
	Susan River	Sediffentation/Siltation	Medium	
	Busan Kivei	Unknown Toxicity	Medium	
	Tinemaha Reservoir	Chanoni Toatony	Modram	
	- Internation 100001 (011	Metals	Medium	
	Topaz Lake			
	· r · · · ·	Sedimentation/Siltation	Medium	

Truckee River	Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
New River		Truckee River			
Sedimentation/Siltation			Sedimentation/Siltation	Medium	
Coachella Valley Storm Channel Pathogens Medium		Ward Creek			
Pathogens Medium			Sedimentation/Siltation	Medium	
Pathogens Medium	7				
Channel	,	Coachella Valley Storm			
Pathogens Medium					
Imperial Valley Drains Sedimentation/Siltation High 2004 New River Dissolved Organic Matter/DO Medium High 2002 Silt High 2002 Trash Medium Pathogens Medium Salton Sea Nutrients High 2004 8 Big Bear Lake Metals (copper, mercury and others) Medium Nourients/noxious aquatic plants Medium Canyon Lake Organic, enrichment/low D.O. High 2004 Chino Creek, Reach 1 nitrogen Medium Chino Creek, Reach 2 Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Medium Chino Creek Reach 1 Netrients/noxious Medium Chino Creek, Reach 1 Netrogen Medium Chino Creek, Reach 2 Pathogens Medium Chino Creek, Reach 2 Reach Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Chino Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium M		Chamer	Pathogens	Medium	
New River		Imperial Valley Drains	1 unogens	Wediam	
New River		imperiar variey Brains	Sedimentation/Siltation	High	2004
Dissolved Organic Matter/DO Silt High 2002		Naw Piwar	Sediffentation/Sittation	IIIgii	2004
Silt High Medium Palo Verde Outfall Drain Pathogens Medium Salton Sea Nutrients High 2004 8 Big Bear Lake Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Medium Canyon Lake Organic enrichment/low D.O. High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Grout Creek Metals (copper, mercury and others) Medium Medium Medium Medium Medium Medium Medium Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients/noxious aquatic plants Medium Medium		New River	Dissolved Organia Matter/DO	Madium	
Trash Medium Pallo Verde Outfall Drain Pathogens Medium Salton Sea Nutrients High 2004 8 Big Bear Lake Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Medium Canyon Lake Organic: enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Redium Medium Medium Medium Medium Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Medium					2002
Palo Verde Outfall Drain Pathogens Nutrients High 2004 8 Big Bear Lake Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Silation Canyon Lake Organic, enrichment/low D.O. High 2004 Pathogens Chino Creek, Reach 1 Introgen Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Medium Medium Medium Medium Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Med				-	2002
Salton Sea Nutrients High 2004 8 Big Bear Lake Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients High 2004 High 2004		Pala Varda Outfall Drain	Hasii	Medium	
Salton Sea Nutrients Big Bear Lake Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Canyon Lake Organic.enrichment/low D.O. Pathogens High Chino Creek, Reach 1 nitrogen Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Cucamonga Creek, Valley Reach Medium Cucamonga Creek, Valley Reach Nutrients/noxious aquatic plants Medium Cucamonga Creek Medium Cucamonga Creek, Valley Reach Medium Medium Cucamonga Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Cucamonga Creek Medium Cucamonga Creek Medium Medium Medium Lake Elsinore Nutrients Nutrients Nutrients High Audu		Paio verde Outian Drain	P. d) (P	
Big Bear Lake Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Chino Creek, Reach 2 Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium		g 1 g	Pathogens	Medium	
Big Bear Lake Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Cucamonga Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients Nutrients High 2004 Sediment/siltation High 2004		Salton Sea			
Big Bear Lake Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Cucamonga Creek, Valley Reach Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients High 2004 Elsinore Nutrients High 2004 Nutrients High 2004 Nutrients High 2004 Sediment/siltation High 2004			Nutrients	High	2004
Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium	8				
Metals (copper, mercury and others) Nutrients/noxious aquatic plants Sediment/Siltation Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium		Big Bear Lake			
others) Nutrients/noxious aquatic plants Sediment/Siltation Medium Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients Nutrients Sediment/siltation High 2004 Nutrients Sediment/siltation High 2004		8	Metals (copper mercury and	Medium	
Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Cucamonga Creek, Valley Reach Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aduatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients High 2004 Sediment/siltation High 2004				1110010111	
Canyon Lake Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients High 2004 Sediment/siltation High 2004			Nutrients/noxious aquatic plants	Medium	
Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients High 2004 Lake Sediment/siltation High 2004			Sediment/Siltation	Medium	
Organic. enrichment/low D.O. High 2004 Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients High 2004 Lake Sediment/siltation High 2004		Canyon Lake			
Pathogens High 2004 Chino Creek, Reach 1 nitrogen Medium Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients Sediment/siltation High 2004		•	Organic. enrichment/low D.O.	High	2004
Chino Creek, Reach 1 nitrogen Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients Sediment/siltation High 2004					2004
nitrogen Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Creek Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients Sediment/siltation High 2004		Chino Creek, Reach 1			
Pathogens Medium Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients Sediment/siltation High 2004		· · · · · · · · · · · · · · · ·	nitrogen	Medium	
Chino Creek, Reach 2 Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients Nutrients Sediment/siltation High 2004					
Pathogens Medium Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Lake Elsinore Nutrients Nutrients High 2004 Sediment/siltation High		Chino Creek Reach 2	3		
Cucamonga Creek, Valley Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients Nutrients Nutrients High 2004 Sediment/siltation High 2004		enino creek, reden 2	Pathogens	Medium	
Reach Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients Nutrients Sediment/siltation High 2004		Cucamanga Craek Valley	1 unogens	Wediam	
Pathogens Medium Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients Nutrients Sediment/siltation High 2004					
Grout Creek Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients Nutrients High 2004 Sediment/siltation High 2004		Reach	Dathogons	Madium	
Metals (copper, mercury and others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients Nutrients High 2004 Sediment/siltation High		Chart Charle	raniogens	Medium	
others) Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients High 2004 Sediment/siltation High 2004		Gioui Cieek	Matala (agri 1	Madin	
Nutrients/noxious aquatic plants Medium Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients High 2004 Sediment/siltation High 2004				Medium	
Knickerbocker Creek Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients High 2004 Sediment/siltation High 2004			,	Medium	
Metals (copper, mercury and others) Pathogens Medium Lake Elsinore Nutrients High 2004 Sediment/siltation High 2004		Knickerhocker Creek	normous aquatic piants		
others) Pathogens Medium Lake Elsinore Nutrients High 2004 Sediment/siltation High 2004		MINICACIOUCACI CIECA	Metals (conner mercury and	Medium	
Pathogens Medium Lake Elsinore Nutrients High 2004 Sediment/siltation High 2004				Mediaiii	
Lake Elsinore Nutrients High Sediment/siltation High 2004 2004			, and the second	Medium	
NutrientsHigh2004Sediment/siltationHigh2004		Lake Elsinore	0		
Sediment/siltation High 2004		Lake Lisinote	Nutrients	High	2004
•					
Unknown toxicity High 2004			Unknown toxicity	High	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Lower Newport Bay			
	Rhine Channel			
		Other toxics as identified by	Medium	
		USEPA Selenium	High	2004
	Mill Creek (Prado area)	Scientini	Tilgii	2004
	wim ereek (Frade area)	nitrogen	Medium	
		Pathogens	Medium	
		Suspended Solids	Medium	
	Prado Park Lake			
		Pathogens	Medium	
	Rathbone Creek			
		Nutrients/noxious aquatic plants	Medium	
	<u> </u>	Sediment/Siltation	Medium	
	San Diego Creek, Reach 1	C11 'C /1' '	YY' 1	2002
		Chlorpyrifos/diazinon Other toxics as identified by	High Medium	2003
		USEPA	Medium	
		Selenium	High	2004
	San Diego Creek, Reach 2			
		Chlorpyrifos/diazinon	High	2003
		Other toxics as identified by USEPA	Medium	
		Selenium	High	2004
	Santa Ana River, Reach 3			
		Pathogens	Medium	
	Summit Creek			
		Nutrients/noxious aquatic plants	Medium	
	Upper Newport Bay			
		Chlorpyrifos/diazinon	High Medium	2003
		Other toxics as identified by USEPA		
		Selenium	High	2004
9				
	Aliso Creek (mouth)			
	,	Coliform	Medium	
	Aliso Creek 901.13			
		Coliform	Medium	
	Chollas Creek 908.22			
		Coliform	Medium	
		Metals (Cd, Cu, PBS, Zn)	High	2004
		Toxicity (Diazinon)	High	2002
	Mission Bay	C. I'S	N.C. II	
	Desifie O Cl 1'	Coliform	Medium	
	Pacific Ocean Shoreline, Aliso Beach HSA 901.13			
		Coliform	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	Pacific Ocean Shoreline, Coronado HA 910.10			
		Coliform	Medium	
	Pacific Ocean Shoreline, Dana Point HSA 901.14			
		Coliform	Medium	
	Pacific Ocean Shoreline, Laguna Beach HSA 901.12			
	Pacific Ocean Shoreline,	Coliform	Medium	
	Lower San Juan HSA 901.27	Coliform	Medium	
	Pacific Ocean Shoreline, San Clemente HA 901.30			
	Pacific Ocean Shoreline,	Coliform	Medium	
	San Diego HU 907.00	Coliform	Medium	
	Pacific Ocean Shoreline, Scripps HA 906.30			
	B 1 C 1	Coliform	Medium	
	Rainbow Creek	Eutrophic (Nutrients)	High	2002
	San Diego Bay Shoreline, Lindbergh HSA 908.21			
	-	Coliform	Medium	
	San Diego Bay Shoreline, Telegraph HSA 909.11	G VS	M.E	
	San Diego Bay, near Sub Base	Coliform	Medium	
	Base	Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; Downtown Piers			
		Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; near Chollas Creek			
	-	Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; near Coronado Bridge			
		Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; near Grape Street			
		Degraded Benthic Community and Sediment Toxicity	Medium	

Region	Water Body	Pollutant/Stressor	Priority	TMDL Completion Date
	San Diego Bay; north of			
	24th Street Marine Terminal			
		Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; San Diego Naval Station			
		Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; Seventh Street Channel			
		Degraded Benthic Community and Sediment Toxicity	Medium	
	San Diego Bay; Shelter Island Yacht Basin			
		Metals (dissolved Cu)	High	2003
	San Juan Creek (mouth) 901.20			
		Coliform	Medium	
	San Juan Creek, lower		_	
		Coliform	Medium	
	Tecolote Creek, 906.50			
		Coliform	Medium	

Table 6: TMDLs Completed List

Region	Water Body	Pollutant/Stressor	Year TMDL Completed					
1								
	TMDL Completed							
	Garcia River	Sediment	2002					
	Laguna de Santa Rosa	Nitrate	1995					
	TMDL Established by USEPA Under Consent De	ecree						
	South Fork Trinity River/ Hayfork Cro	eek Sediment						
	Van Duzen River/ Yager Creek	Sediment						
	Noyo River	Sediment						
	South Fork Eel River	Sediment and Tempera	ature					
	Ten Mile River	Sediment						
	Navarro River	Sediment and Tempera	ature					
	Gualala River	Sediment						
	Redwood Creek	Sediment						
3								
	TMDL Adopted by the RWQCB and returned to	RWQCB for clarification	on.					
	San Lorenzo River	Nitrate						
	TMDL Pending RWQCB Approval							
		C - 1: t						
	Morro Bay	Sediment						
4	THE A SWEET AND A							
	TMDL Approved by the SWRCB and Pending O.	AL Approval						
	Los Angeles River	Trash						
	Ballona Creek	Trash						
	TMDL Completed							
	Upper San Gabriel River	Trash	2000					
	TMDL Pending RWQCB Approval							
	Santa Monica Beaches	Pathogens						
	Santa Clara River	Chloride						
	Los Angeles River	Mercury						
	Calleguas Creek	Chloride						
5	- 1. J							
J	TMDL Completed							
	Salt Slough	Selenium	1996					
	Grasslands	Selenium	1996					
6								
	TMDL Adopted by the RWQCB, Approved by the	e SWRCB and returne	d to the RWQCB					
	for clarification before OAL Approval							
	Heavenly Valley	Sediment						
	TMDL Pending RWQCB Approval							
	Indian Creek	Phosphorus						

Region	Water Body	Pollutant/Stressor	Year TMDL Completed							
7										
	TMDL Adopted by the RWQCB and Pending	SWRCB Approval								
	New River	Pathogen								
	TMDL Approved by the SWQCB and Pending OAL Approval									
	Alamo River	Sediment								
8										
	TMDL Completed									
	Santa Ana River	Nutrients	1998							
	Newport Bay/San Diego Creek	Fecal Coliform	1999							
	Newport Bay/San Diego Creek	Sediment	1999							
	Newport Bay/San Diego Creek	Phosphorus	1999							
	Newport Bay/San Diego Creek	Nitrogen	1999							

Appendix: 1998 California 303(d) List and TMDL Priority Schedule
Please Note : For clarity, the additions, deletions, changes, priorities, and schedules presented in Tables 1, 2, 3, and 5 are not been incorporated into the Appendix. When the SWRCB considers adoption of the 2002 California section 303(d) list all changes will be included.
The Watch List (Table 4) and the TMDLs Completed List (Table 6) will be attached at the end of the section 303(d) list.

			HYDRO				SIZE		START	END
REGION			UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
1	E	EEL RIVER DELTA	111.110							
				Sedimentation/Siltation		Low	6350	Acres	0204	1206
					onpoint Source					
					ange Land					
					ilviculture		0050	A	0004	4000
				Temperature	onpoint Source	Low	6350	Acres	0204	1206
				N	onpoint Source					
1	Ε	ESTERO AMERICANO	115.300							
				Nutrients		Medium	692	Acres	0497	0206
					t strategy is attempting to inc in the Estero de San Antonic					
					ast Regional Water Quality (Strategy,	
				M	lanure Lagoons					
					asture Land					
				Sedimentation/Siltation		Medium	692	Acres	0497	0206
					t strategy is attempting to inc					0_00
					in the Estero de San Antonio	,	, ,		Strategy,	
				adopted by the North Coa	ast Regional Water Quality (Control Board at the De	ecember 11, 199	7 meeting.		
				E	rosion/Siltation					
				н	ydromodification					
				N	onpoint Source					
				R	emoval of Riparian Vegeta	tion				
				R	iparian Grazing					
				S	treambank Modification/De	estabilization				
1	Е	NAVARRO RIVER DELTA	113.500							
				Sedimentation/Siltation		Medium	20	Acres	0298	1200
				E	rosion/Siltation					
1	ı	LAKE PILLSBURY	111.630							
•	-	EARL FILLSBOKT	111.030	Mercury		Low	2280	Acres	1209	1211
				-	atural Sources	LOW	2200	ACIES	1203	1211
	_	41 BION BR/55	440.405	i v	atarar Oouroes					
1	R	ALBION RIVER	113.400	.			4			,
				Sedimentation/Siltation	Ol for Albion Pivor	Medium	14	Miles	0299	1201
				USEPA is preparing TML						
					onpoint Source					
				S	ilviculture					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE 1 R **AMERICANO CREEK** 115.300 **Nutrients** Medium 7 Miles 0497 0206 (See Estero Americano) **Animal Operations Dairies Manure Lagoons Pasture Land** Riparian Grazing **Upland Grazing** 1 R **BIG RIVER** 113.300 Sedimentation/Siltation Medium 40 Miles 0299 1201 **Nonpoint Source** Silviculture **EEL RIVER, MIDDLE FORK** 111.700 Sedimentation/Siltation 64 Miles 0201 1203 Low USEPA will develop a TMDL for Eel River, Middle Fork. **Erosion/Siltation Temperature** Low 64 Miles 0201 1203 USEPA will develop a TMDL for Eel River, Middle Fork. **Nonpoint Source EEL RIVER, MIDDLE MAIN FORK** 111.70 1 Sedimentation/Siltation Low 1075.38 Miles 0203 1205 USEPA will develop a TMDL for Eel River, Middle Main Fork. **Nonpoint Source** Range Land Silviculture Temperature 1075.38 0203 1205 Low Miles USEPA will develop a TMDL for Eel River, Middle Main Fork. **Nonpoint Source** 1 R **EEL RIVER, NORTH FORK** 111.500 Sedimentation/Siltation Low 41 Miles 0200 1202 USEPA will develop TMDL for Eel River, North Fork **Erosion/Siltation** Logging Road Construction/Maintenance **Nonpoint Source** Silviculture **Temperature** Low 41 Miles 0200 1202 USEPA will develop TMDL for Eel River, North Fork. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY AFFECTED UNIT DATE DATE 1 R **EEL RIVER, SOUTH FORK** 111.300 Sedimentation/Siltation Low 85 Miles 0297 1299 USEPA is developing TMDL for Eel River. South Fork. Sediment and temperature TMDLs will be developed for: (1) the area tributary to and including the South Fork of the Eel River above Garberville and (2) the area tributary to and including the South For of the Eel River below Garberville. **Erosion/Siltation** Flow Regulation/Modification Hydromodification Logging Road Construction/Maintenance **Nonpoint Source** Range Land Removal of Riparian Vegetation **Resource Extraction** Silviculture **Temperature** Low 85 Miles 0297 1299 USEPA is developing TMDL for Eel River, South Fork. Erosion/Siltation Flow Regulation/Modification Hydromodification **Nonpoint Source** Removal of Riparian Vegetation **EEL RIVER, UPPER MAIN FORK** 111.60 Sedimentation/Siltation Low 1154.24 Miles 0202 1204 USEPA will develop a TMDL for Eel River, Upper Main Fork. **Nonpoint Source** Range Land Silviculture **Temperature** 1154.24 Miles 0202 1204 Low USEPA will develop a TMDL for Eel River, Upper Main Fork. **Nonpoint Source** 1 R **ELK RIVER** 110.000 Sedimentation/Siltation Medium 87.53 Miles 0207 2009 Sedimentation, threat of sedimentation, impaired irrigation water quality, impaired domestic supply water quality, impaired spawning habitat, increased rate and depth of flooding due to sediment, property damage. Regional Water Board and California Department of Forestry staff are involved in ongoing efforts to attain adherance to Forest Practice Rules. It is possible that compliance will bring attainment prior to TMDL development. **Erosion/Siltation** Harvesting, Restoration, Residue Management Logging Road Construction/Maintenance **Nonpoint Source** Removal of Riparian Vegetation Silviculture Streambank Modification/Destabilization

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	FRESHWATER CREEK	110.000							
				Sedimentation/Siltation		Medium	72.67	Miles	0208	1210
				Sedimentation, threat of s impaired spawning habitat Water Board and Californi Forest Practice Rules. It i	t, increased rate and dep ia Department of Forestry	th of flooding due to sedi	ment, property o oing efforts to a	lamage. Re ttain adhera	egional	
				Er	osion/Siltation					
				На	rvesting, Restoration, F	Residue Management				
				Lo	gging Road Construction	on/Maintenance				
				No	onpoint Source					
				Sil	lviculture					
1	R	GARCIA RIVER	113.700							
				Sedimentation/Siltation The Regional Water Board sediment control on the G promulgation of a TMDL fo	arcia River. In January,	, 1998, USEPA issued pub			0997 for	1297
				Ch	nannel Erosion					
				Er	osion/Siltation					
				На	rvesting, Restoration, F	Residue Management				
					gging Road Construction	on/Maintenance				
				No	onpoint Source					
					emoval of Riparian Vege	etation				
					parian Grazing					
				_	lviculture					
					reambank Modification/					
				Temperature Elevated temperatures importance (Pardaloe Creek), 113.700 the estuary, which include Board is working to adopt with measures in this TML temperature. Ha	011, 12, 13, 14, 20, 21, a es that portion of 113.700 a TMDL for sediment on	nd the entire mainstem G 22, 23, 24, 25, and 26. F the Garcia River. It is po	arcia River from ebruary 1998 - essible that volui	n Pardaloe C The Regiona ntary compli	Creek to al Water ance	2000
				No	onpoint Source					
				Re	emoval of Riparian Vege	etation				
				St	reambank Modification/	/Destabilization				

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

			HVDBO				SIZE	πρριονου		END.
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	GUALALA RIVER	113.800							
				Sedimentation/Siltation		Medium	35	Miles	0499	1201
					isturbed Sites (Land Develor	p.)				
					rosion/Siltation	d Managanana				
					arvesting, Restoration, Residence and Development	due Management				
					ogging Road Construction/M	laintonanco				
					onpoint Source	lamtenance				
					load Construction					
				S	ilviculture					
				S	pecialty Crop Production					
1	R	KLAMATH RIVER	105.000							
				Nutrients		Medium	190	Miles	0402	0404
					eveloped for the area tributary	to and including:				
				Clear Lake Reservoir Are Lost River/Tule Lake to C						
				Oregon border to iron Ga						
				Iron Gate Dam to Scott F						
				Scott River to Trinity Rive Trinity River to the Ocean						
				•	gricultural Return Flows					
					rigated Crop Production					
				M	Iunicipal Point Sources					
					onpoint Source					
				Org. enrichment/Low D.O.		Medium	180	Miles	0202	1204
					do not meet Basin Plan Object d Oxygen TMDL will be develo _l				solved	
				A	gricultural Return Flows					
					low Regulation/Modification					
					Iunicipal Point Sources					
				Temperature TMDI s will	be developed for the area tribi	Medium	190	Miles	0402	0404
				Clear Lake Reservoir Are		utary to and including.				
				Lost River/Tule Lake to C						
				Oregon border to iron Ga Iron Gate Dam to Scott F						
				Scott River to Trinity Rive						
				Trinity River to the Ocean						
				D	am Construction/Operation					
					low Regulation/Modification					
					abitat Modification					
					lonpoint Source					
				V	Vater Diversions					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	MAD RIVER	109.000							
					MDL for the Mad River. Sediment TML River (North Fork), (2) the Mad River(L				0205 to and	0207
				3 () 1 1 1	Nonpoint Source	., ,. (-, -,	- (-	,		
					Resource Extraction					
					Silviculture					
					e developed for the area tributary to and (3) the Mad River (Middle).	Low nd including: (1) th	90 he Mad River (Miles (North Fork),	0205 (2) the	0207
				,	Nonpoint Source					
					Resource Extraction					
					Silviculture					
1	R	MATTOLE RIVER	112.300							
				Sedimentation/Siltation		Medium	56	Miles	0200	1202
					Erosion/Siltation					
					Habitat Modification					
					Hydromodification					
					Nonpoint Source					
					Range Land					
					Removal of Riparian Vegetation					
					Riparian Grazing					
					Silviculture					
					Specialty Crop Production	ration				
				Temperature	Streambank Modification/Destabilize	zation Medium	56	Miles	0200	1202
				remperature	Habitat Modification	wealulli	90	WITES	0200	1202
					Nonpoint Source					
					Removal of Riparian Vegetation					
					Silviculture					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
1	R	NAVARRO RIVER	113.500							

Sedimentation/Siltation Medium 25 Miles 0298

Sediment TMDLs will be developed for: (1) the area tributary to and including the Navarro River above Philo and (2) the area tributary to and including the Navarro River below Philo.

Approved by USEPA: 12-May-99

1200

Agriculture

Agriculture-grazing

Channel Erosion

Construction/Land Development

Disturbed Sites (Land Develop.)

Drainage/Filling Of Wetlands

Erosion/Siltation

Flow Regulation/Modification

Habitat Modification

Harvesting, Restoration, Residue Management

Highway/Road/Bridge Construction

Irrigated Crop Production

Land Development

Logging Road Construction/Maintenance

Nonirrigated Crop Production

Nonpoint Source

Range Land

Removal of Riparian Vegetation

Resource Extraction

Riparian Grazing

Road Construction

Silvicultural Point Sources

Silviculture

Specialty Crop Production

Streambank Modification/Destabilization

Upland Grazing

Water Diversions

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Agi Agi Dra Flo Hal No Rei Res		on ds ion tation	25 Iding the Navar	Miles tro River abo	0298 ove Philo	1200
1	R	NOYO RIVER	113.200							
					npoint Source viculture	Medium	35	Miles	0698	1299
1	R	REDWOOD CREEK	107.000	Rai						1298

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **RUSSIAN RIVER** 114.100 Sedimentation/Siltation Medium 105 Miles 0209 1211 [Entire watershed, mainly tributaries.] Sedimentation, threat of sedimentation, siltation, turbidity, bank erosion impaired spawning and rearing habitat, increased rate and depth of flooding due to sediment, property damage, in Russian River and tributaries. Aggradation in the main stem Russian River. Sonoma County Water Agency has begun a comprehensive Endangered Species Act habitat assessment. This project should arrive at assessment and control measures equivalent to TMDL allocation and attainment strategies. Agriculture-storm runoff **Channel Erosion** Channelization **Construction/Land Development** Disturbed Sites (Land Develop.) **Drainage/Filling Of Wetlands Erosion/Siltation** Flow Regulation/Modification **Habitat Modification** Harvesting, Restoration, Residue Management Highway/Road/Bridge Construction Hydromodification **Land Development** Logging Road Construction/Maintenance **Nonpoint Source** Other Urban Runoff Removal of Riparian Vegetation Riparian Grazing **Road Construction** Silviculture **Specialty Crop Production** Streambank Modification/Destabilization **Upland Grazing** 1 R SCOTT RIVER 105.400 Sedimentation/Siltation Low 68 Miles 0203 0405 **Irrigated Crop Production** Mine Tailings **Nonpoint Source Pasture Land Resource Extraction** Silviculture

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END REGION TYPE** NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Temperature Low 68 Miles 0203 0405 **Agricultural Return Flows** Drainage/Filling Of Wetlands **Habitat Modification Irrigated Crop Production Nonpoint Source Pasture Land** Removal of Riparian Vegetation Silviculture Streambank Modification/Destabilization **Water Diversions** 1 R SHASTA RIVER 105.500 Org. enrichment/Low D.O. Low 52 Miles 0203 0905 **Agricultural Return Flows** Flow Regulation/Modification Riparian Grazing Temperature Low 52 Miles 0203 0905 **Agricultural Water Diversion** Agriculture-irrigation tailwater **Drainage/Filling Of Wetlands Habitat Modification Nonpoint Source** Removal of Riparian Vegetation **Water Diversions** STEMPLE CREEK 115.400 1 R Nutrients Low 17 Miles 0496 0498 This water body/pollutant was relisted by USEPA. **Manure Lagoons Nonpoint Source Pasture Land** 1 R **TEN MILE RIVER** 113.130 Sedimentation/Siltation 10 0298 1200 Low Miles USEPA is developing TMDL for Ten Mile River. **Nonpoint Source** Silviculture

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE R **TOMKI CREEK** 111.620 Sedimentation/Siltation Medium 18 Miles 0202 1204 USEPA will develop TMDL's for Eel River Watershed in the Tomki Creek vicinity. Tomki Creek, tributary to the Eel River, has been listed under Clean Water Act Section 303(d) due to the effects of sedimentation. Restoration effort has targeted the riparian area. Tomki Creek is under consideration for removal from the 303(d) list. **Erosion/Siltation Nonpoint Source** Range Land Silviculture R TRINITY RIVER 106.000 Sedimentation/Siltation 170 0199 1201 Medium USEPA will develop TMDL for Trinity River. Sediment TMDLs will be developed for the area tributary to and including: (1) the Trinity River (Upper), (2) the Trinity River (Middle), and (3) the Trinity River (Lower). Mine Tailings **Nonpoint Source** Range Land Resource Extraction Silviculture R TRINITY RIVER, SOUTH FORK 106.200 1 Sedimentation/Siltation Low 80 Miles 0397 1298 USEPA will be developing TMDL for South Fork Trinity River. Sediment TMDLs will be developed for: (1) areas tributary to and including Hayfork/Corral Creeks and (2) areas tributary to and including the South Fork of the Trinity River except Hayfork/Corral Creeks **Nonpoint Source** Riparian Grazing Silviculture **Temperature** Low 80 0206 1208 Elevated temperatures impact coldwater fisheries. USEPA will be developing TMDL for South Fork Trinity River. **Habitat Modification** Removal of Riparian Vegetation Riparian Grazing Streambank Modification/Destabilization **Water Diversions** 111.200 1 R **VAN DUZEN RIVER** Sedimentation/Siltation Miles 0297 1299 Low USEPA is developing TMDL for Van Duzen River. Sediment TMDLs will be developed for: (1) areas tributary to and including Yager Creek, (2) areas tributary to and including the Van Duzen River above Bridgeville, and (3) areas tributary to and including the Van Duzen River below Bridgeville. **Erosion/Siltation Nonpoint Source** Range Land Silviculture

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
2	В	CARQUINEZ STRAIT	207.100							
				Chlordane		Low	6560	Acres		
				This listing was made by U	ISEPA.					
				No	npoint Source					
				Copper		Medium	6560	Acres	2003	2008
				Exceedance of California T and sediment tissue levels		eria and National Toxic I	Rules total crite	ria; elevated		
				Atn	nospheric Deposition					
				Mu	nicipal Point Sources					
				Oth	ner					
				Urk	oan Runoff/Storm Sewer	rs				
				DDT		Low	6560	Acres		
				This listing was made by U						
					npoint Source					
				Diazinon		Medium	6560	Acres	2000	2005
				Diazinon levels cause wate application in late winter ar						
				spring, early summer. Chi					Tato	
				,	npoint Source	•	ŕ			
				Dieldrin	•	Low	6560	Acres		
				This listing was made by U	ISEPA.					
				No	npoint Source					
				Dioxin compounds*		High	6560	Acres		
				* The specific compounds 1,2,3,7,8,9-HxCDD, 1,2,3,4			3-HxCDD, 1,2,3,	.6,7,8-HxCD	D,	
				This listing was made by U	ISEPA.					
				,	nospheric Deposition					
				Exotic Species		High	6560	Acres	1998	2003
				Disrupt natural benthos; ch	nange pollutant availability	/ in food chain; disrupt fo	ood availability t	to native spe	ecies.	
Ballast Water										
				Furan compounds*		High	6560	Acres		
	* The specific compounds are: 2,3,7,8-TCDF, 1,2,3,7,8-PcCDF 2,3,4,7,8-PeCDF, 1,2,3,4,7,8 1,2,3,6,7,8-HxCDF, 1,2,3,4,6,7,8-HxCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,4,6,7,8-HxCDF, 1,2,3,4,							-, and		
				This listing was made by U	ISEPA.					
				Atn	nospheric Deposition					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT UNIT AFFECTED DATE DATE High 6560 Acres 1998 2003 Mercury Current data indicate fish consumption and wildlife consumption impacted uses. Major source is historic: gold mining sediments and local mercury mining; most significant ongoing source is erosion and drainage from abandoned mines; moderate to low level inputs from point sources. **Atmospheric Deposition Industrial Point Sources Municipal Point Sources Natural Sources** Nonpoint Source **Resource Extraction** Nickel Low 6560 Acres 2006 2010 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria: elevated water and sediment tissue levels. **Municipal Point Sources** Other **Urban Runoff/Storm Sewers PCBs** Medium 6560 2003 2008 Acres This listing covers non dioxin-like PCBs. Interim health advisory for fish; uncertainty regarding water column concentration data. **Unknown Nonpoint Source** PCBs (dioxin-like)* 6560 High Acres * The specific dioxin-like PCBs are 3,4,4',5-TCB (81), 3,3',3,3'-TCB (77), 3,3',4,4',5-PeCB (126), 3,3',4,4',4,4'-HxCB (169), 2,3,3',4,4'-PeCB (105), 2,3,4,4',5-PeCB (114), 2,3',4,4',5-PeCB (118), 2',3,4,4',5-PeCB (123), 2,3,3',4,4',5-HxCB (156), 2,3,3',4,4',5'-HxCB (157), 2,3',4,4',5,5'-HxCB (167), 2,3,3',4,4',5,5'-HpCB (189). This listing was made by USEPA. **Unknown Nonpoint Source** Selenium Low 6560 2006 2010 Affected use is one branch of the food chain; most sensitive indicator is hatchability in nesting diving birds, significant contributions from oil refineries (control program in place) and agriculture (carried downstream by rivers); exotic species may have made food chain more susceptible to accumulation of selenium; health consumption advisory in effect for scaup and scoter (diving ducks); low TMDL priority because Individual Control Strategy in place. **A**ariculture **Industrial Point Sources** 2 В **RICHARDSON BAY** 203.130 Chlordane Low 2560 Acres This listing was made by USEPA. **Nonpoint Source** DDT 2560 Low Acres This listing was made by USEPA. **Nonpoint Source** 2560 Dieldrin Low Acres This listing was made by USEPA. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99 **HYDRO** SIZE **END START** REGION TYPE NAME POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT UNIT AFFECTED DATE DATE Dioxin compounds* High 2560 Acres * The specific compounds are: 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD. This listing was made by USEPA. **Atmospheric Deposition** 2560 2003 **Exotic Species** High Acres 1998 Disrupt natural benthos; change pollutant availability in food chain; endanger food availability to native species. **Ballast Water** 2560 Furan compounds* High Acres * The specific compounds are: 2,3,7,8-TCDF, 1,2,3,7,8-PcCDF 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2',3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF. This listing was made by USEPA. Atmospheric Deposition **High Coliform Count** 200 2003 2008 Medium Acres Affected area, Waldo Point Harbor, is less than 10% of embayment; source has been positively identified as substandard sewage systems in some houseboat areas; extensive local control program in place with significant water quality improvements. **Boat Discharges/Vessel Wastes** Septage Disposal **Urban Runoff/Storm Sewers** 2003 Mercurv Hiah 2560 Acres 1998 Current data indicate fish consumption and wildlife consumption impacted uses: health consumption advisory in effect for multiple fish species including striped bass and shark. Major source is historic: gold mining sediments and local mercury mining; most significant ongoing source is erosion and drainage from abandoned mines; moderate to low level inputs from point sources. **Atmospheric Deposition Municipal Point Sources Natural Sources** Nonpoint Source Resource Extraction **PCBs** Medium 2560 Acres 2003 2008 This listing covers non dioxin-like PCBs. Interim health advisory for fish; uncertainty regarding water column concentration data. **Unknown Nonpoint Source** PCBs (dioxin-like)* High 2560 Acres * The specific dioxin-like PCBs are 3,4,4',5-TCB (81), 3,3',3,3'-TCB (77), 3,3',4,4',5-PeCB (126), 3,3',4,4',4,4'-HxCB (169), 2,3,3',4,4'-PeCB (105), 2,3,4,4',5-PeCB (114), 2,3',4,4',5-PeCB (118), 2',3,4,4',5-PeCB (123), 2,3,3',4,4',5-HxCB (156), 2,3,3',4,4',5'-HxCB (157), 2,3',4,4',5,5'-HxCB (167), 2,3,3',4,4',5,5'-HpCB (189). This listing was made by USEPA. **Unknown Nonpoint Source** 2 SAN FRANCISCO BAY, CENTRAL 203.120 В Chlordane Low 67700 Acres This listing was made by USEPA. **Nonpoint Source**

Appendix -14

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE Medium 67700 Acres 2003 2008 Copper Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria: elevated water and sediment tissue levels. **Atmospheric Deposition Municipal Point Sources** Other **Urban Runoff/Storm Sewers** DDT 67700 Low Acres This listing was made by USEPA. **Nonpoint Source** Diazinon Medium 67700 Acres 2000 2005 Diazinon levels cause water column toxicity. Two patterns: pulses through riverine systems linked to agricultural application in late winter and pulse from residential land use areas linked to homeowner pesticide use in late spring, early summer. Chlorpyrifos may also be the cause of toxicity; more data needed, however. **Nonpoint Source** Dieldrin Low 67700 Acres This listing was made by USEPA. **Nonpoint Source** Dioxin compounds* 67700 Acres High * The specific compounds are: 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD. This listing was made by USEPA. **Atmospheric Deposition Exotic Species** High 67700 1998 2003 Acres Disrupt natural benthos; change pollutant availability in food chain; endanger food availability to native species. **Ballast Water** Furan compounds* High 67700 Acres * The specific compounds are: 2,3,7,8-TCDF, 1,2,3,7,8-PcCDF 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2',3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF. This listing was made by USEPA. **Atmospheric Deposition** Mercury High 67700 Acres 1998 2003 Current data indicate fish consumption and wildlife consumption impacted uses: health consumption advisory in effect for multiple fish species including striped bass and shark. Major source is historic: gold mining sediments and local mercury mining; most significant ongoing source is erosion and drainage from abandoned mines; moderate to low level inputs from point sources. Atmospheric Deposition **Industrial Point Sources Municipal Point Sources Natural Sources Nonpoint Source** Resource Extraction

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE **PCBs** Medium 67700 Acres 2008 2003 This listing covers non dioxin-like PCBs. Interim health advisory for fish; uncertainty regarding water column concentration data. **Unknown Nonpoint Source** PCBs (dioxin-like)* High 67700 Acres * The specific dioxin-like PCBs are 3,4,4',5-TCB (81), 3,3',3,3'-TCB (77), 3,3',4,4',5-PeCB (126), 3,3',4,4',4,4'-HxCB (169), 2,3,3',4,4'-PeCB (105), 2,3,4,4',5-PeCB (114), 2,3',4,4',5-PeCB (118), 2',3,4,4',5-PeCB (123), 2,3,3',4,4',5-HxCB (156), 2,3,3',4,4',5'-HxCB (157), 2,3',4,4',5,5'-HxCB (167), 2,3,3',4,4',5,5'-HpCB (189) This listing was made by USEPA. **Unknown Nonpoint Source** Selenium Low 67700 Acres 2006 2010 Affected use is one branch of the food chain; most sensitive indicator is hatchability in nesting diving birds, significant contributions from oil refineries (control program in place) and agriculture (carried downstream by rivers); exotic species may have made food chain more susceptible to accumulation of selenium; health consumption advisory in effect for scaup and scoter (diving ducks); low TMDL priority because Individual Control Strategy in place. **A**ariculture **Exotic Species Industrial Point Sources Natural Sources** 204.100 2 В SAN FRANCISCO BAY, LOWER Chlordane 79900 Low Acres This listing was made by USEPA. **Nonpoint Source** 2003 Copper Medium 79900 Acres 2008 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria; elevated water and sediment tissue levels. **Atmospheric Deposition Municipal Point Sources** Other **Urban Runoff/Storm Sewers** DDT 79900 Low Acres This listing was made by USEPA. **Nonpoint Source** Diazinon 79900 2000 2005 Medium Acres Diazinon levels cause water column toxicity. Two patterns: pulses through riverine systems linked to agricultural application in late winter and pulse from residential land use areas linked to homeowner pesticide use in late spring, early summer. Chlorpyrifos may also be the cause of toxicity; more data needed, however. **Nonpoint Source** Dieldrin Low 79900 Acres This listing was made by USEPA. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT UNIT AFFECTED DATE DATE Dioxin compounds* High 79900 Acres * The specific compounds are: 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD. This listing was made by USEPA. **Atmospheric Deposition** 79900 2003 **Exotic Species** High Acres 1998 Disrupt natural benthos; change pollutant availability in food chain; endanger food availability to native species. **Ballast Water** 79900 Furan compounds* High Acres * The specific compounds are: 2,3,7,8-TCDF, 1,2,3,7,8-PcCDF 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2',3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF. This listing was made by USEPA. **Atmospheric Deposition** High 79900 1998 2003 Mercurv Acres Current data indicate fish consumption and wildlife consumption impacted uses: health consumption advisory in effect for multiple fish species including striped bass and shark. Major source is historic: gold mining sediments and local mercury mining; most significant ongoing source is erosion and drainage from abandoned mines; moderate to low level inputs from point sources: water objective exceedances. Elevated sediment levels. elevated tissue levels. **Atmospheric Deposition Industrial Point Sources** Municipal Point Sources **Natural Sources Nonpoint Source Resource Extraction** Nickel Medium 79900 Acres 2003 2008 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria; elevated water and sediment tissue levels of nickel. **Atmospheric Deposition Municipal Point Sources** Other **Urban Runoff/Storm Sewers PCBs** Medium 79900 Acres 2003 2008 This listing covers non dioxin-like PCBs. Interim health advisory for fish: uncertainty regarding water column concentration data. **Unknown Nonpoint Source** PCBs (dioxin-like)* High 79900 Acres * The specific dioxin-like PCBs are 3,4,4',5-TCB (81), 3,3',3,3'-TCB (77), 3,3',4,4',5-PeCB (126), 3,3',4,4',4,4'-HxCB (169), 2,3,3',4,4'-PeCB (105), 2,3,4,4',5-PeCB (114), 2,3',4,4',5-PeCB (118), 2',3,4,4',5-PeCB (123), 2,3,3',4,4',5-HxCB (156), 2,3,3',4,4',5'-HxCB (157), 2,3',4,4',5,5'-HxCB (167), 2,3,3',4,4',5,5'-HpCB (189). This listing was made by USEPA. **Unknown Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE 2 В SAN FRANCISCO BAY, SOUTH 205.100 Chlordane Low 24500 Acres This listing was made by USEPA. **Nonpoint Source** Copper High 24500 Acres 1998 2003 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria: elevated water and sediment tissue levels. **Atmospheric Deposition Municipal Point Sources** Other **Urban Runoff/Storm Sewers** DDT 24500 Low Acres This listing was made by USEPA. **Nonpoint Source** Diazinon Medium 24500 2000 2005 Diazinon levels cause water column toxicity. Two patterns: pulses through riverine systems linked to agricultural application in late winter and pulse from residential land use areas linked to homeowner pesticide use in late spring, early summer. Chlorpyrifos may also be the cause of toxicity; more data needed, however. **Nonpoint Source** Dieldrin Low 24500 Acres This listing was made by USEPA. **Nonpoint Source** Dioxin compounds* 24500 Hiah Acres * The specific compounds are: 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD. This listing was made by USEPA. **Atmospheric Deposition** High 24500 2003 **Exotic Species** Acres 1998 Disrupt natural benthos; change pollutant availability in food chain; endanger food availability to native species. **Ballast Water** Furan compounds* High 24500 Acres * The specific compounds are: 2,3,7,8-TCDF, 1,2,3,7,8-PcCDF 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2',3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF. This listing was made by USEPA. **Atmospheric Deposition**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99 **HYDRO** SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE High 24500 Acres 1998 2003 Mercury Current data indicate fish consumption and wildlife consumption impacted uses: health consumption advisory in effect for multiple fish species including striped bass and shark. Major source is historic: gold mining sediments and local mercury mining: most significant ongoing source is erosion and drainage from abandoned mines: moderate to low level inputs from point sources; water objective exceedances. Elevated sediment levels, elevated tissue levels. Atmospheric Deposition **Industrial Point Sources Municipal Point Sources Natural Sources Nonpoint Source Resource Extraction** Nickel 24500 1998 2003 High Acres Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria: elevated water and sediment tissue levels. **Municipal Point Sources** Other **Urban Runoff/Storm Sewers PCBs** Medium 24500 Acres 2003 2008 This listing covers non dioxin-like PCBs. Interim health advisory for fish; uncertainty regarding water column concentration data. **Unknown Nonpoint Source** PCBs (dioxin-like)* High 24500 * The specific dioxin-like PCBs are 3.4.4',5-TCB (81), 3.3',3.3'-TCB (77), 3.3',4,4',5-PeCB (126), 3,3',4,4',4,4'-HxCB (169), 2,3,3',4,4'-PeCB (105), 2,3,4,4',5-PeCB (114), 2,3',4,4',5-PeCB (118), 2',3,4,4',5-PeCB (123), 2,3,3',4,4',5-HxCB (156), 2,3,3',4,4',5'-HxCB (157), 2,3',4,4',5,5'-HxCB (167), 2,3,3',4,4',5,5'-HpCB (189). This listing was made by USEPA. **Unknown Nonpoint Source** 24500 2006 Selenium Low Acres 2010 A formal health advisory has been issued by OEHHA for benthic-feeding ducks in South San Francisco Bay. This health advisory clearly establishes that water contact recreation beneficial use (REC-1) is not fully supported and standards are not fully met. **A**ariculture **Domestic Use of Ground Water** 2 В **SAN PABLO BAY** 206.100 Chlordane Low 71300 Acres This listing was made by USEPA. **Nonpoint Source** 71300 2003 2008 Copper Medium Acres Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria; elevated water and sediment tissue levels. **Atmospheric Deposition Municipal Point Sources** Other **Urban Runoff/Storm Sewers**

Appendix -19

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99 **HYDRO** SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE DDT Low 71300 Acres This listing was made by USEPA. Nonpoint Source Diazinon Medium 71300 Acres 2000 2005 Diazinon levels cause water column toxicity. Two patterns: pulses through riverine systems linked to agricultural application in late winter and pulse from residential land use areas linked to homeowner pesticide use in late spring, early summer. Chlorpyrifos may also be the cause of toxicity; more data needed, however. **Nonpoint Source** Dieldrin 71300 Low Acres This listing was made by USEPA. **Nonpoint Source** Dioxin compounds* High 71300 Acres * The specific compounds are: 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD. This listing was made by USEPA. **Atmospheric Deposition** 71300 **Exotic Species** High Acres 1998 2003 Disrupt natural benthos; change pollutant availability in food chain; disrupt food availability to native species. **Ballast Water** Furan compounds* High 71300 Acres * The specific compounds are: 2,3,7,8-TCDF, 1,2,3,7,8-PcCDF 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2',3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF. This listing was made by USEPA. **Atmospheric Deposition** Mercury High 71300 Acres 1998 2003 Current data indicate fish consumption and wildlife consumption impacted uses: health consumption advisory in effect for multiple fish species including striped bass and shark. Major source is historic: gold mining sediments and local mercury mining; most significant ongoing source is erosion and drainage from abandoned mines; moderate to low level inputs from point sources. **Atmospheric Deposition Municipal Point Sources Natural Sources Nonpoint Source Resource Extraction** Nickel Low 71300 Acres 2006 2010 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria: elevated water and sediment tissue levels. **Municipal Point Sources** Other **Urban Runoff/Storm Sewers PCBs** 71300 2008 Medium Acres 2003 This listing covers non dioxin-like PCBs. Interim health advisory for fish; uncertainty regarding water column concentration data.

Unknown Nonpoint Source

Appendix -20

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE PCBs (dioxin-like)* High 71300 Acres * The specific dioxin-like PCBs are 3,4,4',5-TCB (81), 3,3',3,3'-TCB (77), 3,3',4,4',5-PeCB (126), 3,3',4,4',4,4'-HxCB (169), 2,3,3',4,4'-PeCB (105), 2,3,4,4',5-PeCB (114), 2,3',4,4',5-PeCB (118), 2',3,4,4',5-PeCB (123), 2,3,3',4,4',5-HxCB (156), 2,3,3',4,4',5'-HxCB (157), 2,3',4,4',5,5'-HxCB (167), 2,3,3',4,4',5,5'-HpCB (189). This listing was made by USEPA. **Unknown Nonpoint Source** Selenium 71300 Low 2006 2010 Affected use is one branch of the food chain: most sensitive indicator is hatchability in nesting diving birds. significant contributions from oil refineries (control program in place) and agriculture (carried downstream by rivers); exotic species may have made food chain more susceptible to accumulation of selenium; health consumption advisory in effect for scaup and scoter (diving ducks); low TMDL priority because Individual Control Strategy in place. Agriculture **Exotic Species Industrial Point Sources Natural Sources** 2 В **SUISUN BAY** 207.100 Chlordane 25000 Low Acres This listing was made by USEPA. **Nonpoint Source** Copper Medium 25000 Acres 2003 2008 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria: elevated water and sediment tissue levels. **Atmospheric Deposition Municipal Point Sources** Other **Urban Runoff/Storm Sewers** DDT Low 25000 Acres This listing was made by USEPA. **Nonpoint Source** Diazinon Medium 25000 Acres 2000 2005 Diazinon levels cause water column toxicity. Two patterns: pulses through riverine systems linked to agricultural application in late winter and pulse from residential land use areas linked to homeowner pesticide use in late spring, early summer. Chlorpyrifos may also be the cause of toxicity; more data needed, however. **Nonpoint Source** Dieldrin Low 25000 Acres This listing was made by USEPA. **Nonpoint Source** Dioxin compounds* 25000 High Acres * The specific compounds are: 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD. This listing was made by USEPA. **Atmospheric Deposition**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-Mav-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE **Exotic Species** High 25000 Acres 1998 2003 Disrupt natural benthos: change pollutant availability in food chain; disrupt food availability to native species. **Ballast Water** Furan compounds* High 25000 Acres * The specific compounds are: 2,3,7,8-TCDF, 1,2,3,7,8-PcCDF 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2',3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF. This listing was made by USEPA. **Atmospheric Deposition** Mercurv 25000 1998 2003 High Current data indicate fish consumption and wildlife consumption impacted uses. Major source is historic: gold mining sediments and local mercury mining; most significant ongoing source is erosion and drainage from abandoned mines; moderate to low level inputs from point sources. **Atmospheric Deposition Industrial Point Sources Natural Sources Nonpoint Source Resource Extraction** Nickel Low 25000 2006 2010 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria: elevated water and sediment tissue levels. **Municipal Point Sources** Other **Urban Runoff/Storm Sewers PCBs** Medium 25000 Acres 2003 2008 This listing covers non dioxin-like PCBs. Interim health advisory for fish; uncertainty regarding water column concentration data. **Unknown Nonpoint Source** PCBs (dioxin-like)* High 25000 Acres * The specific dioxin-like PCBs are 3.4.4'.5-TCB (81), 3.3'.3.3'-TCB (77), 3.3'.4.4'.5-PeCB (126), 3.3'.4.4'.4.4'-HxCB (169), 2,3,3',4,4'-PeCB (105), 2,3,4,4',5-PeCB (114), 2,3',4,4',5-PeCB (118), 2',3,4,4',5-PeCB (123), 2,3,3',4,4',5-HxCB (156), 2,3,3',4,4',5'-HxCB (157), 2,3',4,4',5,5'-HxCB (167), 2,3,3',4,4',5,5'-HpCB (189). This listing was made by USEPA. **Unknown Nonpoint Source** Selenium Low 25000 Acres 2006 2010 Affected use is one branch of the food chain; most sensitive indicator is hatchability in nesting diving birds, significant contributions from oil refineries (control program in place) and agriculture (carried downstream by rivers); exotic species may have made food chain more susceptible to accumulation of selenium; health consumption advisory in effect for scaup and scoter (diving ducks); low TMDL priority because Individual Control Strategy in place. **Exotic Species Industrial Point Sources Natural Sources**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE 2 В **TOMALES BAY** 201.110 Metals Medium 7820 Acres 2002 2007 TMDL will be developed as part of evolving watershed management effort. Tributary streams, Lagunitas Creek and Walker Creek, must be managed first. Additional monitoring and assessment needed. Mine Tailings **Nutrients** Medium 7820 Acres 2002 2007 TMDL will be developed as part of evolving watershed management effort. Tributary streams, Lagunitas Creek and Walker Creek, must be managed first. Additional monitoring and assessment needed. **A**ariculture Pathogens 7820 2002 Medium Acres 2007 TMDL will be developed as part of evolving watershed management effort. Tributary streams, Lagunitas Creek and Walker Creek, must be managed first. Additional monitoring and assessment needed. **Animal Operations** Septage Disposal Sedimentation/Siltation Medium 7820 Acres 2002 2007 TMDL will be developed as part of evolving watershed management effort. Tributary streams, Lagunitas Creek and Walker Creek, must be managed first. Additional monitoring and assessment needed. **Agriculture Upstream Impoundment** Ε 2 **SACRAMENTO SAN JOAQUIN** 207.100 **DELTA** Chlordane Low 15000 Acres This listing was made by USEPA. **Nonpoint Source** 15000 Copper Medium Acres 2003 2008 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria; elevated water and sediment tissue levels. **Atmospheric Deposition Municipal Point Sources** Other **Urban Runoff/Storm Sewers** DDT Low 15000 Acres This listing was made by USEPA. **Nonpoint Source** Diazinon Medium 15000 Acres 2000 2005 Diazinon levels cause water column toxicity. Two patterns: pulses through riverine systems linked to agricultural application in late winter and pulse from residential land use areas linked to homeowner pesticide use in late spring, early summer. Chlorpyrifos may also be the cause of toxicity; more data needed, however. Nonpoint Source Dieldrin 15000 Low Acres This listing was made by USEPA. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT UNIT AFFECTED DATE DATE Dioxin compounds* High 15000 Acres * The specific compounds are: 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD. This listing was made by USEPA. **Atmospheric Deposition Exotic Species** 15000 2003 High Acres 1998 Disrupt natural benthos; change pollutant availability in food chain; endanger food availability to native species. **Ballast Water** 15000 Furan compounds* High Acres * The specific compounds are: 2,3,7,8-TCDF, 1,2,3,7,8-PcCDF 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2',3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF. This listing was made by USEPA. **Atmospheric Deposition** High 15000 1998 2003 Mercurv Acres Current data indicate fish consumption and wildlife consumption impacted uses. Major source is historic: gold mining sediments and local mercury mining; most significant ongoing source is erosion and drainage from abandoned mines; moderate to low level inputs from point sources. **Atmospheric Deposition Industrial Point Sources** Municipal Point Sources **Nonpoint Source Resource Extraction** Nickel Low 15000 Acres 2006 2010 Exceedance of California Toxic Rules dissolved criteria and National Toxic Rules total criteria: elevated water and sediment tissue levels. **Municipal Point Sources** Other **Urban Runoff/Storm Sewers PCBs** Medium 15000 Acres 2003 2008 This listing covers non dioxin-like PCBs. Interim health advisory for fish; uncertainty regarding water column concentration data. **Unknown Nonpoint Source** PCBs (dioxin-like)* High 15000 Acres * The specific dioxin-like PCBs are 3,4,4',5-TCB (81), 3,3',3,3'-TCB (77), 3,3',4,4',5-PeCB (126), 3,3',4,4',4,4'-HxCB (169), 2,3,3',4,4'-PeCB (105), 2,3,4,4',5-PeCB (114), 2,3',4,4',5-PeCB (118), 2',3,4,4',5-PeCB (123), 2,3,3',4,4',5-HxCB (156), 2,3,3',4,4',5'-HxCB (157), 2,3',4,4',5,5'-HxCB (167), 2,3,3',4,4',5,5'-HpCB (189). This listing was made by USEPA. **Unknown Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE Selenium Low 15000 Acres 2010 2006 Affected use is one branch of the food chain; most sensitive indicator is hatchability in nesting diving birds, significant contributions from oil refineries (control program in place) and agriculture (carried downstream by rivers); exotic species may have made food chain more susceptible to accumulation of selenium; health consumption advisory in effect for scaup and scoter (diving ducks); low TMDL priority because Individual Control Strategy in place. **A**ariculture **Exotic Species Industrial Point Sources Natural Sources CALERO RESERVOIR** 205.400 Mercury 350 High Acres 1998 2003 TMDL will be developed as part of the Santa Clara Basin Watershed Management Initiative. Additional monitoring and assessment is needed. Mine Tailings **Surface Mining** 2 **GUADALUPE RESERVOIR** 205.400 Mercury High 80 Acres 1998 2003 TMDL will be developed as part of the Santa Clara Basin Watershed Management Initiative. Additional monitoring and assessment is needed. Mine Tailings **Surface Mining** 2 LAKE HERMAN 207.210 Mercurv Low 110 2005 2010 Acres Additional monitoring and assessment needed. Problem due to historical mining. **Surface Mining** 2 **MERRITT LAKE** 204.200 **Floating Material** Low 160 Acres This listing was made by USEPA. **Nonpoint Source** Org. enrichment/Low D.O. 160 Low Acres This listing was made by USEPA. **Nonpoint Source** 2 204.300 **ALAMEDA CREEK** 50.77 Miles Diazinon Low This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R **ALAMITOS CREEK** 205.400 21 Miles 1998 2003 Mercury High TMDL will be developed as part of the Santa Clara Basin Watershed Management Initiative. Additional monitoring and assessment is needed. Mine Tailings

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE ARROYO CORTE MADERA DEL 2 R 203.200 **PRESIDIO** Diazinon 3.2 Miles Low This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R ARROYO DE LA LAGUNA 204.300 Diazinon Low 7.4 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 ARROYO DEL VALLE 204.300 Diazinon Low 48.7 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **ARROYO HONDO** 204.300 Diazinon Low 9.23 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **BUTANO CREEK** 202.400 Sedimentation/Siltation Medium 1 Miles 2000 2005 Impairment to steelhead habitat. **Nonpoint Source** 206.401 2 **CALABAZAS CREEK** Diazinon Low 4.7 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers CORTE MADERA CREEK** 203.200 Diazinon 4.12 Low Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **COYOTE CREEK (MARIN CO)** 203.200 Diazinon 2.62 Low Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **COYOTE CREEK (SANTA CLARA** 205.300 CO.) Diazinon 68.63 Miles Low This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **GALLINAS CREEK** 206.200 Diazinon 2.4 Miles Low This listing was made by USEPA. **Urban Runoff/Storm Sewers**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT **AFFECTED** DATE DATE 2 R **GUADALUPE CREEK** 205.400 Mercury High Miles 1998 2003 TMDL will be developed as part of the Santa Clara Basin Watershed Management Initiative. Additional monitoring and assessment is needed. Mine Tailings 2 R **GUADALUPE RIVER** 205.400 Diazinon Low 18.21 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** High Miles 1998 2003 TMDL will be developed as part of the Santa Clara Basin Watershed Management Initiative. Additional monitoring and assessment is needed. Mine Tailings 2 **LAGUNITAS CREEK** 201.130 R Medium 22 Nutrients Miles 2002 2007 Tributary to Tomales Bay. TMDLs will be developed as part of evolving watershed management effort. Additional monitoring and assessment needed. **A**ariculture **Urban Runoff/Storm Sewers** 22 Miles 2002 **Pathogens** Medium 2007 Tributary to Tomales Bay. TMDLs will be developed as part of evolving watershed management effort. Additional monitoring and assessment needed. **Agriculture Urban Runoff/Storm Sewers** Sedimentation/Siltation Medium Miles 2002 2007 Tributary to Tomales Bay. TMDLs will be developed as part of evolving watershed management effort. Additional monitoring and assessment needed. **A**ariculture **Urban Runoff/Storm Sewers** 2 207.230 R LAUREL CREEK Diazinon Low 3.02 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **LEDGEWOOD CREEK** 207.230 Diazinon Miles Low 12.44 This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 LOS GATOS CREEK (REG 2) 205.400 Diazinon Low 25.72 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE START END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE 2 R **MATADERO CREEK** 205.500 Diazinon Low 7.34 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **MILLER CREEK** R 206.200 Diazinon Low 9.03 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** MT. DIABLO CREEK 207.310 2 R Diazinon Low 12.63 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R **NAPA RIVER** 206.500 **Nutrients** Medium 55 Miles 2000 2005 TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. Agriculture **Pathogens** Medium 55 2000 2005 TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. **Agriculture Urban Runoff/Storm Sewers** Sedimentation/Siltation Miles High 1998 2003 TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. Agriculture **Construction/Land Development Urban Runoff/Storm Sewers** 2 R **NOVATO CREEK** 206.200 Diazinon Low 18.74 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 PERMANENTE CREEK 205.500 Diazinon Low 13.1 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **PESCADERO CREEK (REG 2)** 202.400 Medium Sedimentation/Siltation 21 Miles 2000 2005 Impairment to steelhead habitat. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE 2 R **PETALUMA RIVER** 206.300 **Nutrients** Medium 25 Miles 2000 2005 TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. **Agriculture Construction/Land Development Urban Runoff/Storm Sewers Pathogens** Medium 25 Miles 2000 2005 TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. **Agriculture Construction/Land Development Urban Runoff/Storm Sewers** Sedimentation/Siltation Medium 25 Miles 2000 2005 TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. Agriculture **Construction/Land Development Urban Runoff/Storm Sewers** 2 R **PINE CREEK** 207.310 Diazinon 12.56 Miles Low This listing was made by USEPA. **Urban Runoff/Storm Sewers** 206.600 2 R **PINOLE CREEK** Diazinon 9.17 Miles Low This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **RODEO CREEK** 201.300 R Diazinon 7.96 Miles Low This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **SAN ANTONIO CREEK (REG 2)** 206.300 Miles Diazinon Low 17.77 This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 **SAN FELIPE CREEK** 205.300 Diazinon Low 15.47 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 SAN FRANCISQUITO CREEK 205.500 Diazinon Low 12.05 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers**

Appendix -29

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE Sedimentation/Siltation Medium 18 Miles 2000 2005 Impairment to steelhead habitat. **Nonpoint Source SAN GREGORIO CREEK** 202.300 2 R Sedimentation/Siltation Medium 16 Miles 2000 2005 Impairment to steelhead habitat. **Nonpoint Source** 2 204.200 SAN LEANDRO CREEK Diazinon Low 14.77 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 204.200 2 R **SAN LORENZO CREEK (R2)** Diazinon Low 11.7 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R **SAN MATEO CREEK** 204.400 Diazinon Low 11.05 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R **SAN PABLO CREEK** 206.600 Diazinon Low 16.14 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R SAN RAFAEL CREEK 203.200 Diazinon Low 2.8 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 205.500 2 R **SARATOGA CREEK** Diazinon Low 17.86 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R **SONOMA CREEK** 206.400 Medium 23 2000 2005 **Nutrients** Miles TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. Agriculture **Construction/Land Development Urban Runoff/Storm Sewers**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE **Pathogens** Medium 23 Miles 2000 2005 TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. **Agriculture Construction/Land Development Urban Runoff/Storm Sewers** Sedimentation/Siltation Medium 23 Miles 2000 2005 TMDL will be developed as part of ongoing watershed management effort. Additional monitoring and assessment needed. **A**ariculture **Construction/Land Development Urban Runoff/Storm Sewers** STEVENS CREEK 2 R 205.500 Diazinon 22.26 Miles Low This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R SUISUN SLOUGH 207.23 10 Diazinon Low Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R WALKER CREEK 201.120 Metals Medium 25 Miles 2002 2007 Tributary to Tomales Bay. TMDLs will be developed as part of evolving watershed management effort. Additional monitoring and assessment needed. Mine Tailings **Surface Mining** 25 Nutrients Medium Miles 2002 2007 Tributary to Tomales Bay. TMDLs will be developed as part of evolving watershed management effort. Additional monitoring and assessment needed. **A**ariculture Sedimentation/Siltation Medium 25 Miles 2002 2007 Tributary to Tomales Bay. TMDLs will be developed as part of evolving watershed management effort. Additional monitoring and assessment needed. **Agriculture** 2 WALNUT CREEK 207.320 Diazinon Low 9.03 Miles This listing was made by USEPA. **Urban Runoff/Storm Sewers** 2 R WILDCAT CREEK 206.600 Diazinon Miles Low 12.07 This listing was made by USEPA. **Urban Runoff/Storm Sewers**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE 2 SUISUN MARSH WETLANDS 207.230 Metals Medium 57000 Acres 2003 2008 Additional monitoring and assessment needed. **Agriculture** Flow Regulation/Modification **Urban Runoff/Storm Sewers** Nutrients Medium 57000 Acres 2003 2008 Additional monitoring and assessment needed. **Agriculture** Flow Regulation/Modification **Urban Runoff/Storm Sewers** Org. enrichment/Low D.O. Medium 57000 Acres 2003 2008 Additional monitoring and assessment needed. Agriculture Flow Regulation/Modification **Urban Runoff/Storm Sewers** Salinity Medium 57000 2003 2008 Acres Additional monitoring and assessment needed. Agriculture Flow Regulation/Modification **Urban Runoff/Storm Sewers** 3 В MONTEREY HARBOR 309.500 Metals 74 Medium Acres 0198 0403 Railroad Slag Pile **Unknown Toxicity** Low 74 Acres 0198 0411 Source Unknown 3 В **MORRO BAY** 310.220 Metals High 100 Acres 0696 0400 **Boat Discharges/Vessel Wastes Nonpoint Source Surface Mining Pathogens** High 50 Acres 0696 0400 **Natural Sources Nonpoint Source** Septage Disposal **Upland Grazing Urban Runoff/Storm Sewers** Sedimentation/Siltation High 100 Acres 0696 0699 **Agriculture Channel Erosion** Channelization **Construction/Land Development Irrigated Crop Production Resource Extraction**

Appendix -32

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

REGION	TYPE		HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
3	В	MOSS LANDING HARBOR	306.000	Pathogens	Agriculture Boat Discharges/Vessel Wastes Nonpoint Source	Low	40	Acres	0405	0409
				Pesticides	Agriculture Irrigated Crop Production Specialty Crop Production	Low	160	Acres	0405	0409
				Sedimentation/Siltation	Agriculture Agriculture-storm runoff Channel Erosion Dredging (Hydromod.) Erosion/Siltation Hydromodification Irrigated Crop Production Nonpoint Source	Low	160	Acres	0405	0409
3	С	MONTEREY BAY SOUTH	309.500	Metals		Low	10	Miles	0198	0411
				Pesticides	Surface Mining Agriculture	Low	10	Miles	0198	0411
3	С	PACIFIC OCEAN AT POINT RINCON	315.340	Pathogens	Nonpoint Source Urban Runoff/Storm Sewers	Medium	5	Miles	0406	0411
3	E	CARPINTERIA MARSH (EL ESTERO MARSH)	315.340							
				Nutrients	Agriculture	Low	80	Acres	0406	0411
				Org. enrichment/Low D.C	_	Low	80	Acres	0406	0411
				Priority Organics	Urban Runoff/Storm Sewers	Low	80	Acres	0406	0411
				Sedimentation/Siltation	Agriculture Construction/Land Development Storm sewers	Low	80	Acres	0406	0411

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** NAME **PRIORITY** REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **AFFECTED** UNIT DATE DATE 3 Ε **ELKHORN SLOUGH** 306.000 **Pathogens** Low 500 Acres 0405 0409 **Natural Sources** Nonpoint Source **Pesticides** Low 500 Acres 0405 0409 Industrial discharge from PG&E may transfer pollutants from Old Salinas river and Moss Landing Harbor to the slough. **Agricultural Return Flows** Agriculture Agriculture-storm runoff **Contaminated Sediments Erosion/Siltation Irrigated Crop Production Nonpoint Source** Sedimentation/Siltation Low 50 Acres 0405 0409 **Agriculture** Agriculture-storm runoff **Channel Erosion Irrigated Crop Production Nonpoint Source** 3 Ε **GOLETA SLOUGH/ESTUARY** 315.310 Metals Low 200 Acres 0406 0411 **Industrial Point Sources Pathogens** 200 0406 0411 Low Acres **Urban Runoff/Storm Sewers Priority Organics** 200 0406 0411 Low Acres **Nonpoint Source** Sedimentation/Siltation Low 200 Acres 0406 0411 **Construction/Land Development** 3 Ε **OLD SALINAS RIVER ESTUARY** 309.100 Nutrients Medium 50 Acres 0198 0403 **Agricultural Return Flows** Agriculture **Irrigated Crop Production Nonpoint Source Pesticides** 0198 0403 Medium 50 Acres **Agricultural Return Flows** Agriculture Agriculture-irrigation tailwater Agriculture-storm runoff **Irrigated Crop Production Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99 **HYDRO** SIZE **START END** NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE 3 Ε SALINAS RIVER LAGOON (NORTH) 309.100 **Nutrients** Medium 75 Acres 0198 0403 **Nonpoint Source Pesticides** 75 Medium Acres 0198 0403 **Agriculture** 75 Sedimentation/Siltation Medium Acres 0198 0401 **Nonpoint Source** 3 Ε SAN LORENZO RIVER ESTUARY 304.120 **Pathogens** Medium 20 Acres 0499 0401 **Natural Sources Urban Runoff/Storm Sewers** Sedimentation/Siltation High 20 Acres 0198 0400 Hydromodification 3 Ε **WATSONVILLE SLOUGH** 305.100 Metals Medium 300 Acres 0199 0403 **Agriculture Urban Runoff/Storm Sewers** 0403 Oil and grease Medium 300 Acres 0199 **Nonpoint Source Urban Runoff/Storm Sewers** 300 0403 0199 **Pathogens** Medium Acres **Nonpoint Source** Source Unknown **Urban Runoff/Storm Sewers Pesticides** 300 0199 0403 Medium Acres **Agricultural Return Flows** Agriculture Agriculture-storm runoff **Irrigated Crop Production Nonpoint Source** Sedimentation/Siltation Medium 300 0198 0401 Acres Agriculture Agriculture-storm runoff **Irrigated Crop Production Nonpoint Source** 3 305.500 **HERNANDEZ RESERVOIR** Mercury Medium 619 Acres 0198 0403 **Subsurface Mining** 3 NACIMIENTO RESERVOIR 309.820 5370 Metals High Acres 0997 0400 **Natural Sources**

Subsurface Mining

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE 3 R **APTOS CREEK** 304.130 **Pathogens** Low 4 Miles 0405 0411 **Urban Runoff/Storm Sewers** Sedimentation/Siltation Medium Miles 0101 0401 **Channel Erosion** Disturbed Sites (Land Develop.) 3 R ARROYO BURRO CREEK 315.320 **Pathogens** Medium 6 Miles 0406 0411 **Nonpoint Source Urban Runoff/Storm Sewers** 3 R **BLANCO DRAIN** 309.100 **Pesticides** Medium 8 Miles 0198 0405 **Agricultural Return Flows** Agriculture Agriculture-irrigation tailwater Agriculture-storm runoff **Irrigated Crop Production Nonpoint Source CARBONERA CREEK** 304.120 3 R **Nutrients** High 10 0493 Miles 0400 **Nonpoint Source Pathogens** Medium 10 Miles 0499 0401 **Nonpoint Source Urban Runoff/Storm Sewers** Sedimentation/Siltation 10 0198 0400 High Miles Construction/Land Development **Nonpoint Source** 3 R **CARPINTERIA CREEK** 315.340 **Pathogens** Low 6 Miles 0406 0411 **A**ariculture **Nonpoint Source** Septage Disposal 3 R **CHORRO CREEK** 310.220 Metals High 11 Miles 0696 0400 Mine Tailings **Resource Extraction Nutrients** High 11 Miles 0696 0400 Agriculture Agriculture-storm runoff **Irrigated Crop Production Municipal Point Sources**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END **REGION TYPE** NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE Sedimentation/Siltation High 11 Miles 0696 0699 **Agriculture** Agriculture-storm runoff **Channel Erosion** Channelization **Construction/Land Development Erosion/Siltation** Golf course activities Hydromodification **Irrigated Crop Production Natural Sources Nonpoint Source** Range Land **Resource Extraction Road Construction** Streambank Modification/Destabilization **Upland Grazing** 3 R **CLEAR CREEK (R3)** 304.120 Medium 2 Miles 0198 Mercury 0403 **Resource Extraction** LAS TABLAS CREEK 309.810 3 Metals High 13 Miles 0997 0400 **Surface Mining** 3 LAS TABLAS CREEK, NORTH 309.810 **FORK** 5 Metals High Miles 0997 0400 **Surface Mining** 3 LAS TABLAS CREEK, SOUTH FORK 309.810 Metals High 4 Miles 0997 0400 **Surface Mining**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE 3 R **LLAGAS CREEK** 305.300 22 **Nutrients** High Miles 0198 0401 **Agricultural Return Flows** Agriculture Agriculture-irrigation tailwater Agriculture-storm runoff **Habitat Modification Irrigated Crop Production Municipal Point Sources Nonpoint Source Pasture Land Point Source Urban Runoff/Storm Sewers** Sedimentation/Siltation Medium 22 Miles 0198 0401 Agriculture **Habitat Modification** Hydromodification 3 R LOMPICO CREEK 304.120 **Nutrients** High 5 Miles 0493 0400 Septage Disposal **Pathogens** Medium 5 Miles 0499 0401 **Natural Sources Nonpoint Source** Septage Disposal 5 Sedimentation/Siltation High Miles 0198 0400 **Construction/Land Development Natural Sources** 310.220 3 R LOS OSOS CREEK 10 **Nutrients** High Miles 0696 0400 **Agricultural Return Flows** Agriculture Agriculture-storm runoff **Irrigated Crop Production Priority Organics** High 10 Miles 0696 0400 **Urban Runoff/Storm Sewers**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE Sedimentation/Siltation High 10 Miles 0696 0699 **Agriculture** Agriculture-storm runoff **Channel Erosion** Channelization Dredging (Hydromod.) **Erosion/Siltation Habitat Modification** Hydromodification **Irrigated Crop Production Natural Sources Nonpoint Source** Range Land Removal of Riparian Vegetation Streambank Modification/Destabilization **Upland Grazing MISSION CREEK** 315.320 3 R **Pathogens** Low 9 Miles 0406 0411 Septage Disposal **Urban Runoff/Storm Sewers Unknown Toxicity** 9 Miles 0406 0411 Low **Urban Runoff/Storm Sewers** 3 R **PAJARO RIVER** 305.000 **Nutrients** High 49 Miles 0198 0401 **Agricultural Return Flows** Agriculture Agriculture-irrigation tailwater Agriculture-storm runoff Agriculture-subsurface drainage Channelization **Irrigated Crop Production Nonpoint Source** Removal of Riparian Vegetation **Urban Runoff/Storm Sewers** Wastewater - land disposal

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE Sedimentation/Siltation Medium 49 Miles 0198 0401 **Agriculture** Agriculture-storm runoff **Channel Erosion** Channelization **Habitat Modification** Hydromodification **Irrigated Crop Production** Range Land Removal of Riparian Vegetation **Resource Extraction** Streambank Modification/Destabilization **Surface Mining** R RIDER GULCH CREEK 305.100 3 Sedimentation/Siltation Medium 2 Miles 0198 0401 **Agriculture Construction/Land Development** Silviculture 3 R **SALINAS RECLAMATION CANAL** 309.200 **Pesticides** Medium 20 Miles 0198 0405 **Agricultural Return Flows** Agriculture Agriculture-irrigation tailwater Agriculture-storm runoff **Irrigated Crop Production Minor Industrial Point Source Nonpoint Source Priority Organics** Medium 20 Miles 0198 0405 **Agricultural Return Flows Agriculture** Agriculture-irrigation tailwater Agriculture-storm runoff **Irrigated Crop Production Minor Industrial Point Source Nonpoint Source** Source Unknown **Urban Runoff/Storm Sewers** 3 **SALINAS RIVER** 309.100 **Nutrients** Medium 50 Miles 0198 0403 Agriculture

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

			HYDRO				SIZE		START	END
REGION	TYPE	NAME	UNIT	POLLUTANT/STRESSOR	SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
				Pesticides		Medium	50	Miles	0198	0403
					Agricultural Return Flows					
					Agriculture					
					Agriculture-irrigation tailwater					
					Agriculture-storm runoff					
					Irrigated Crop Production					
					Nonpoint Source					
				Salinity/TDS/Chlorides		Medium	50	Miles	0198	0403
					Agriculture					
				Sedimentation/Siltation		Medium	90	Miles	0198	0401
					Agriculture					
					Agriculture-storm runoff					
					Channel Erosion					
					Irrigated Crop Production					
					Land Development					
					Nonpoint Source					
					Range Land					
					Road Construction					
3	R	SAN ANTONIO CREEK (SANTA BARBARA COUNTY)	315.310							
				Sedimentation/Siltation		Low	6	Miles	0406	0411
					Agriculture					
					Nonpoint Source					
3	R	SAN BENITO RIVER	305.500							
				Sedimentation/Siltation		Medium	86	Miles	0198	0401
					Agriculture					
					Nonpoint Source					
					Resource Extraction					
3	R	SAN LORENZO RIVER	304.120							
				Nutrients		High	25	Miles	0493	0400
					Nonpoint Source					
					Septage Disposal					
				Pathogens		High	25	Miles	1999	2001
					Septage Disposal					
					Urban Runoff/Storm Sewers					
							25	Miles	4000	0400
				Sedimentation/Siltation		High	25	Miles	1298	0400
					Construction/Land Development Land Development Silviculture		25	willes	1298	0400

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE 3 R SAN LUIS OBISPO CRK.(BELOW 310.240 W.MARSH ST.) **Nutrients** Hiah 9 Miles 0493 0400 Agriculture Agriculture-storm runoff **Irrigated Crop Production Municipal Point Sources Pathogens** High 9 Miles 0493 0400 **Urban Runoff/Storm Sewers Priority Organics** 9 Medium Miles 0498 0401 **Industrial Point Sources** 3 R SANTA YNEZ RIVER 314.000 70 0403 **Nutrients** Miles 0407 Low **Nonpoint Source** Salinity/TDS/Chlorides Low 70 Miles 0403 0407 **Agriculture** Sedimentation/Siltation Low 70 Miles 0403 0407 Agriculture **Resource Extraction Urban Runoff/Storm Sewers** 304.120 3 R SHINGLE MILL CREEK **Nutrients** High 2 Miles 0198 0401 Septage Disposal Sedimentation/Siltation High 2 Miles 0198 0401 **Construction/Land Development Nonpoint Source** 3 **VALENCIA CREEK** 304.130 **Pathogens** Low 7 Miles 0406 0411 **Agriculture** Septage Disposal 7 Sedimentation/Siltation Miles 0401 Medium 0405 **Agriculture Construction/Land Development** 3 WADDELL CREEK, EAST BRANCH 304.110 **Nutrients** Medium 3 Miles 0401 0405 **Municipal Point Sources** W **ESPINOSA SLOUGH** 309.100 3 **Nutrients** Medium 320 0198 0403 Acres **Agriculture** Storm sewers **Pesticides** 320 Medium 0198 0403 Acres **Agriculture Urban Runoff/Storm Sewers** Appendix -42

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE **Priority Organics** Medium 320 Acres 0198 0403 **Nonpoint Source** 3 MORO COJO SLOUGH 309.100 **Pesticides** 345 Low Acres 0198 0411 **Agricultural Return Flows** Agriculture Agriculture-storm runoff **Irrigated Crop Production Nonpoint Source** Sedimentation/Siltation Low 345 Acres 0198 0411 Agriculture Agriculture-storm runoff **Construction/Land Development Irrigated Crop Production Nonpoint Source** W SALINAS RIVER REFUGE LAGOON 309,100 3 (SOUTH) **Nutrients** Medium 163 Acres 0198 0401 **Agriculture Pesticides** Medium 163 0198 0403 Acres **Agriculture** Salinity/TDS/Chlorides Medium 163 Acres 0198 0403 **Agriculture SCHWAN LAKE** 304.120 3 W **Nutrients** Low 32 **Acres** 0406 0411 **Nonpoint Source** 32 0406 0411 **Pathogens** Low Acres **Natural Sources Urban Runoff/Storm Sewers** 304.130 3 W **SOQUEL LAGOON Nutrients** Low 2 0403 0407 Acres **Nonpoint Source** Septage Disposal 2 0403 0407 **Pathogens** Low Acres **Natural Sources Nonpoint Source Urban Runoff/Storm Sewers** 2 0401 0405 Sedimentation/Siltation Medium Acres **Construction/Land Development**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE 3 **TEMBLADERO SLOUGH** 309.100 **Nutrients** Medium 150 Acres 0198 0403 **Agricultural Return Flows A**ariculture Agriculture-storm runoff **Irrigated Crop Production Nonpoint Source Pesticides** Medium 150 0198 0403 Acres **Agricultural Return Flows Agriculture** Agriculture-storm runoff **Irrigated Crop Production Nonpoint Source** В **CHANNEL ISLANDS HARBOR** 403.11 220 Lead Low Acres Elevated levels of lead in sediment. **Nonpoint Source** Zinc Low 220 Acres Elevated levels of zinc in sediment. **Nonpoint Source** В LA FISH HARBOR 405.12 DDT High 50 Acres Nonpoint/Point Source **PAHs** High 50 Acres Nonpoint/Point Source **PCBs** 50 High Acres Nonpoint/Point Source 0 Tributyltin Low Acres Nonpoint/Point Source В LA HARBOR CONSOLIDATED SLIP 405.12 **Benthic Comm. Effects** High 37.13 Acres **Nonpoint Source** Chlordane Medium 37.13 Acres Elevated levels of chlordane in tissue and sediment. **Nonpoint Source** Chromium Medium 37.13 Acres Elevated levels of chromium in sediment. **Nonpoint Source** DDT Hiah 37.13 Acres Elevated levels of DDT in tissue and sediment. Fish Consumption Advisory for DDT. **Nonpoint Source** 37.13 Lead Low Acres Elevated levels of lead in sediment. **Nonpoint Source**

Appendix -44

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE **PAHs** High 37.13 Acres Elevated levels of PAHs in sediment. **Nonpoint Source PCBs** High 37.13 Acres Elevated levels of PCBs in tissue and sediment. Fish Consumption Advisory for PCBs. **Nonpoint Source Sediment Toxicity** 37.13 High Acres **Nonpoint Source** Tributyltin Low 37.13 Acres Elevated levels of tributyltin in tissue. **Nonpoint Source** Zinc Medium 37.13 Acres Elevated levels of zinc in tissue and sediment. **Nonpoint Source** LA HARBOR INNER BREAKWATER 405.12 DDT High 1.5 Acres Nonpoint/Point Source **PAHs** High 1.5 Acres Nonpoint/Point Source **PCBs** High 1.5 Acres Nonpoint/Point Source Tributyltin Low 1.5 Acres Nonpoint/Point Source LA HARBOR MAIN CHANNEL 405.12 В **Beach Closures** Low 3785 Acres Nonpoint/Point Source Copper Low 3785 Acres Elevated levels of copper in tissue and sediment. Nonpoint/Point Source DDT 3785 High Acres Elevated levels of DDT in tissue and sediment. Fish Consumption Advisory for DDT. Nonpoint/Point Source **PAHs** High 3785 Acres Elevated levels of PAHs in tissue and sediment. Nonpoint/Point Source **PCBs** High 3785 Acres Elevated levels of PCBs in tissue and sediment. Fish Consumption Advisory for PCBs. Nonpoint/Point Source **Sediment Toxicity** 3785 Acres Low Nonpoint/Point Source 3785 Tributyltin Low Acres Elevated levels of tributyltin in sediment. Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE Zinc Low 3785 Acres Elevated levels of zinc in tissue and sediment. Nonpoint/Point Source LA HARBOR SOUTHWEST SLIP 405.12 В DDT Hiah 30 Acres Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** Hiah 30 Acres Fish Consumption Advisory for PCBs. **Nonpoint Source Sediment Toxicity** Medium 30 Acres **Nonpoint Source** LONG BEACH HARBOR MAIN В 405.12 CHANNEL, SE, W BASIN, PIER J, **BREAKWTR Benthic Comm. Effects** Medium 3594 Acres **Nonpoint Source** DDT 3594 Acres High Elevated levels of DDT in tissue. Fish Consumption Advisory for DDT. **Nonpoint Source PAHs** High 3594 Acres Elevated levels of PAHs in sediment. **Nonpoint Source PCBs** High 3594 Acres Elevated levels of PCBs in tissue. Fish Consumption Advisory for PCBs. **Nonpoint Source Sediment Toxicity** Medium 3594 Acres **Nonpoint Source** В MARINA DEL REY HARBOR-BACK 405.13 **BASINS** Benthic Comm. Effects 413 Acres Low **Nonpoint Source** Chlordane High 413 Acres Elevated levels of chlordane in tissue and sediment. **Nonpoint Source** Copper Medium 413 Acres Elevated levels of copper in tissue and sediment. **Nonpoint Source** DDT High 413 Acres Elevated levels of DDT in tissue and sediment. Shellfish Harvesting Advisory for DDT. **Nonpoint Source** Dieldrin 413 Low Acres Elevated levels of dieldrin in tissue. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE **Fish Consumption Advisory** High 413 Acres **Nonpoint Source High Coliform Count** High 413 Acres **Nonpoint Source** Lead Low 413 Acres Elevated levels of lead in tissue and sediment. **Nonpoint Source PCBs** High 413 Acres Elevated levels of PCBs in tissue. Shellfish Harvesting Advisory for PCBs. **Nonpoint Source Sediment Toxicity** 413 Medium Acres **Nonpoint Source** Tributyltin Low 413 Acres Elevated levels of tributyltin in tissue. **Nonpoint Source** Zinc Medium 413 Acres Elevated levels of zinc in tissue and sediment. **Nonpoint Source** В PORT HUENEME HARBOR (BACK 403.11 **BASINS)** DDT High 50 Acres Elevated levels of DDT in tissue. **Nonpoint Source PAHs** 59 High Acres Elevated levels of PAHs in sediment. **Nonpoint Source PCBs** High 50 Acres Elevated levels of PCBs in tissue. **Nonpoint Source** Tributyltin Low 50 Acres Elevated levels of tributyltin in tissue. **Nonpoint Source** Zinc Low 50 Acres Elevated levels of zinc in tissue. **Nonpoint Source** SAN PEDRO BAY NEARS/OFF 405.12 4 **SHORE ZONES- CABRILLO PIER AREA** Chromium 10700 Low Acres Elevated levels of chromium in sediment. Nonpoint/Point Source 10700 Copper Low Acres Elevated levels of copper in sediment. Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE DDT High 10700 Acres Elevated levels of DDT in tissue and sediment. Fish Consumption Advisory for DDT. Nonpoint/Point Source PAHs High 10700 Acres Elevated levels of PAHs in sediment. Nonpoint/Point Source **PCBs** 10700 Acres High Fish Consumption Advisory for PCBs. Nonpoint/Point Source **Sediment Toxicity** Medium 10700 Acres Nonpoint/Point Source Zinc Low 10700 Acres Elevated levels of zinc in sediment. Nonpoint/Point Source SANTA MONICA BAY OFFSHORE В 413.00 AND NEARSHORE Cadmium Low 16640 Acres Elevated levels of cadmium in sediment. Nonpoint/Point Source Chlordane Low 16640 Acres Elevated levels of chlordane in sediment. Nonpoint/Point Source Copper 16640 Low Acres Elevated levels of copper in sediment. Nonpoint/Point Source DDT High 16640 Acres Elevated levels of DDT in tissue and sediment. Nonpoint/Point Source **Debris** 16640 Acres Low Nonpoint/Point Source Fish Consumption Advisory High 16640 Acres Nonpoint/Point Source Lead 16640 Acres Low Elevated levels of lead in tissue and sediment. Nonpoint/Point Source Mercury Medium 16640 Acres Elevated levels of mercury in sediment. Nonpoint/Point Source Nickel Low 16640 Acres Elevated levels of nickel in sediment. Nonpoint/Point Source **PAHs** High 16640 Acres Elevated levels of PAHs in sediment. Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE **PCBs** High 16640 Acres Elevated levels of PCBs in tissue and sediment. Nonpoint/Point Source **Sediment Toxicity** Medium 16640 Acres Nonpoint/Point Source Silver Low 16640 Acres Elevated levels of silver in tissue. Nonpoint/Point Source Zinc Low 16640 Acres Elevated levels of zinc in sediment. Nonpoint/Point Source В **VENTURA HARBOR: VENTURA** 403.11 **KEYES High Coliform Count** High 40 Acres **Nonpoint Source** С **ABALONE COVE BEACH** 405.11 **Beach Closures** Medium 0.94 Miles **Nonpoint Source** DDT 0.94 Miles High Elevated levels of DDT in sediment. Nonpoint Source **PCBs** 0.94 Miles High Fish Consumption Advisory for PCBs. **Nonpoint Source** 404.21 С **AMARILLO BEACH** DDT High 0.3 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.3 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **BIG ROCK BEACH** 404.16 **Beach Closures** Medium 1.09 Miles **Nonpoint Source** DDT High 1.09 Miles Fish Consumption Advisory for DDT. **Nonpoint Source High Coliform Count** High 1.09 Miles **Nonpoint Source PCBs** 1.09 Miles High Fish Consumption Advisory for PCBs. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE С **BLUFF COVE BEACH** 405.11 **Beach Closures** Medium 0.61 Miles **Nonpoint Source** DDT Hiah 0.61 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.61 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **CABRILLO BEACH (INNER) LA** 405.12 HARBOR AREA **Beach Closures (Coliform)** Low 0.79 Miles **Nonpoint Source** DDT High 0.79 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.79 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **CABRILLO BEACH OUTER** 405.12 **Beach Closures** Medium 0.51 Miles **Nonpoint Source** DDT Miles High 0.51 Fish Consumption Advisory for DDT. **Nonpoint Source High Coliform Count** High 0.51 Miles **Nonpoint Source PCBs** High 0.51 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С 404.16 **CARBON BEACH Beach Closures** Medium 1.48 Miles **Nonpoint Source** DDT High 1.48 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 1.48 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **CASTLEROCK BEACH** 405.13 **Beach Closures** Medium 0.81 Miles **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME POLLUTANT/STRESSOR* UNIT SOURCE **PRIORITY** AFFECTED UNIT DATE DATE DDT High 0.81 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.81 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С DAN BLOCKER MEMORIAL 404.31 (CORAL) BEACH **High Coliform Count** High 1.04 Miles **Nonpoint Source** С **DOCKWEILER BEACH** 405.12 **Beach Closures** Medium 5.4 Miles **Nonpoint Source High Coliform Count** High 5.4 Miles **Nonpoint Source** С **ESCONDIDO BEACH** 404.34 **Beach Closures** Medium 2.05 Miles **Nonpoint Source** DDT Hiah 2.05 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 2.05 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **FLAT ROCK POINT BEACH AREA** 405.11 **Beach Closures** Medium 0.3 Miles **Nonpoint Source** DDT High 0.3 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.3 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** 405.12 **HERMOSA BEACH Beach Closures** 1.88 Medium Miles **Nonpoint Source** С INSPIRATION POINT BEACH 405.11 **Beach Closures** Medium 0.3 Miles **Nonpoint Source** DDT High 0.3 Miles Fish Consumption Advisory for DDT. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME **POLLUTANT/STRESSOR*** UNIT SOURCE **PRIORITY AFFECTED** UNIT DATE DATE **PCBs** High 0.3 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С LA COSTA BEACH 404.16 **Beach Closures** Medium 0.74 Miles **Nonpoint Source** DDT High 0.74 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.74 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С LAS FLORES BEACH 404.15 DDT High 0.76 Miles Fish Consumption Advisory for DDT. **Nonpoint Source High Coliform Count** 0.76 High Miles **Nonpoint Source PCBs** 0.76 Miles High Fish Consumption Advisory for PCBs. **Nonpoint Source** С 404.12 LAS TUNAS BEACH **Beach Closures** Medium 1.25 Miles **Nonpoint Source** DDT High 1.25 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 1.25 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С LEO CARILLO BEACH (SOUTH OF 404.44 **COUNTY LINE) Beach Closures** Medium 1.15 Miles **Nonpoint Source High Coliform Count** High 1.15 Miles **Nonpoint Source** С LONG POINT BEACH 405.11 DDT High 0.45 Miles Fish Consumption Advisory for DDT. **Nonpoint Source High Coliform Count** High 0.45 Miles **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END **REGION TYPE** NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE **PCBs** High 0.45 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **LUNADA BAY BEACH** 405.11 **Beach Closures** Medium 0.35 Miles **Nonpoint Source** С MALAGA COVE BEACH 405.11 **Beach Closures** Medium 1.13 Miles **Nonpoint Source** DDT High 1.13 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 1.13 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **MALIBU BEACH** 404.21 **Beach Closures** 0.53 Medium Miles **Nonpoint Source** DDT High 0.53 Miles Fish Consumption Advisory for DDT. **Nonpoint Source** С **MALIBU LAGOON BEACH** 404.21 (SURFRIDER) **Beach Closures** 0.66 Miles Medium **Nonpoint Source** DDT High 0.66 Miles Fish Consumption Advisory for DDT. **Nonpoint Source High Coliform Count** High 0.66 Miles **Nonpoint Source PCBs** High 0.66 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** 403.11 MANDALAY BEACH **Beach Closures** 1.55 Low Miles **Nonpoint Source** С **MANHATTAN BEACH** 405.12 **Beach Closures** Medium 2.08 Miles **Nonpoint Source** С MARINA DEL REY HARBOR BEACH 405.13 **Beach Closures** 0.65 Medium Miles **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END **REGION TYPE** NAME POLLUTANT/STRESSOR* UNIT SOURCE PRIORITY **AFFECTED** UNIT DATE DATE **High Coliform Count** High 0.65 Miles **Nonpoint Source** С MCGRATH BEACH 403.11 **Beach Closures** Low 1.35 Miles **Nonpoint Source High Coliform Count** Medium 1.35 Miles **Nonpoint Source** С **NICHOLAS CANYON BEACH** 404.43 **Beach Closures** Medium 1.94 Miles **Nonpoint Source** DDT High 1.94 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 1.94 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С PALO VERDE SHORELINE PARK 413.057 **BEACH Pathogens** Low 0.12 Miles Source Unknown **Pesticides** 0.12 Miles Low Source Unknown С 404.35 PARADISE COVE BEACH **Beach Closures** Medium 1.33 Miles **Nonpoint Source** DDT High 1.33 Miles Fish Consumption Advisory for DDT. **Nonpoint Source High Coliform Count** High 1.33 Miles **Nonpoint Source PCBs** High 1.33 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** POINT DUME BEACH 404.36 С **Beach Closures** Medium 0.95 Miles **Nonpoint Source** DDT High 0.95 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.95 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	С	POINT FERMIN PARK BEACH	405.11						
				Beach Closures	Medium	1.5	Miles		
			Nonpoint Source	Himb	4 F	Miles			
				DDT Fish Consumption Advisory for DDT.	High	1.5	Miles		
				Nonpoint Source					
				PCBs	High	1.5	Miles		
				Fish Consumption Advisory for PCBs. Nonpoint Source					
4	С	POINT VICENTE BEACH	405.11	Nonpoint Gource					
4	C	POINT VICENTE BEACH	405.11	Beach Closures	Medium	2.13	Miles		
				Nonpoint Source	mouram	20			
4	С	PORTUGESE BEND BEACH	405.11						
				Beach Closures	Medium	2.2	Miles		
				Nonpoint Source					
				DDT Fish Consumption Advisory for DDT.	High	2.2	Miles		
				Nonpoint Source					
			PCBs	High	2.2	Miles			
			Fish Consumption Advisory for PCBs.						
_	_			Nonpoint Source					
4	С	PUERCO BEACH	404.31	Beach Closures	Medium	1.68	Miles		
				Nonpoint Source	Mediani	1.00	Willes		
				DDT	High	1.68	Miles		
				Fish Consumption Advisory for DDT.					
				Nonpoint Source PCBs	High	1.68	Miles		
				Fish Consumption Advisory for PCBs.	підіі	1.00	Willes		
				Nonpoint Source					
4	С	REDONDO BEACH	405.12						
				Beach Closures	Medium	1.37	Miles		
				Nonpoint Source	111	4.07	N#11		
				DDT Fish Consumption Advisory for DDT.	High	1.37	Miles		
				Nonpoint Source					
				High Coliform Count	High	1.37	Miles		
				Nonpoint Source	111-1	4.07	B#11		
				PCBs Fish Consumption Advisory for PCBs.	High	1.37	Miles		
				Nonpoint Source					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE С RESORT POINT BEACH 405.11 **Beach Closures** Medium 0.49 Miles **Nonpoint Source** С **ROBERT H MEYER MEMORIAL** 404.42 **BEACH Beach Closures** Medium 1.23 Miles **Nonpoint Source** DDT High 1.23 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** 1.23 High Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **ROCKY POINT BEACH** 405.11 **Beach Closures** Medium 0.52 Miles **Nonpoint Source** С **ROYAL PALMS BEACH** 405.11 **Beach Closures** Medium 1.06 Miles **Nonpoint Source** DDT High 1.06 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 1.06 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С SANTA CLARA RIVER ESTUARY 403.11 **BEACH/SURFERS KNOLL High Coliform Count** 0.56 Miles Low **Nonpoint Source** С **SANTA MONICA BEACH** 405.13 **Beach Closures** Medium 2.95 Miles **Nonpoint Source High Coliform Count** 2.95 Miles High **Nonpoint Source SEA LEVEL BEACH** 404.41 С **Beach Closures** Medium 0.67 Miles **Nonpoint Source** DDT High 0.67 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.67 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source**

 $^{^{\}star}$ Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE С **TOPANGA BEACH** 404.11 **Beach Closures** Medium 1.01 Miles **Nonpoint Source** DDT Hiah 1.01 Miles Fish Consumption Advisory for DDT. **Nonpoint Source High Coliform Count** High 1.01 Miles **Nonpoint Source PCBs** High 1.01 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **TORRANCE BEACH** 405.12 **Beach Closures** Medium 0.58 Miles **Nonpoint Source High Coliform Count** 0.58 Miles High **Nonpoint Source** С TRANCAS BEACH (BROAD BEACH) 404.37 **Beach Closures** Medium 2.02 Miles **Nonpoint Source** DDT High 2.02 Miles Fish Consumption Advisory for DDT. **Nonpoint Source High Coliform Count** 2.02 Miles High **Nonpoint Source PCBs** 2.02 High Miles Fish Consumption Advisory for PCBs. **Nonpoint Source** С **VENICE BEACH** 405.13 **Beach Closures** Medium 1.5 Miles **Nonpoint Source High Coliform Count** High 1.5 Miles **Nonpoint Source** WHITES POINT BEACH 405.11 **Beach Closures** Medium 0.7 Miles **Nonpoint Source** DDT High 0.7 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 0.7 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE С **WILL ROGERS BEACH** 405.13 **Beach Closures** Medium 2.2 Miles **Nonpoint Source High Coliform Count** 2.2 Miles Hiah **Nonpoint Source ZUMA (WESTWARD BEACH)** 404.36 **Beach Closures** Medium 1.65 Miles **Nonpoint Source** DDT High 1.65 Miles Fish Consumption Advisory for DDT. **Nonpoint Source PCBs** High 1.65 Miles Fish Consumption Advisory for PCBs. **Nonpoint Source MALIBU LAGOON** 404.21 Ε Benthic Comm. Effects Medium 32.5 Acres Nonpoint/Point Source **Enteric Viruses** 32.5 High Acres Nonpoint/Point Source Eutrophic Medium 32.5 Acres 0193 1202 Nonpoint/Point Source **High Coliform Count** High 32.5 Acres Nonpoint/Point Source Shellfish Harvesting Adv. Medium 32.5 Acres Nonpoint/Point Source **Swimming Restrictions** High 32.5 Acres Nonpoint/Point Source Ε **MUGU LAGOON** 403.11 Chlordane High 2000 1298 Acres Elevated levels of chlordane in tissue. **Nonpoint Source** Copper Medium 2000 Acres Nonpoint/Point Source Dacthal High 2000 Acres 1298 Elevated levels of dacthal in tissue. **Nonpoint Source** DDT 2000 High Acres 1298 Elevated levels of DDT in tissue and sediment. Effects on bird reproductivity from DDT. **Nonpoint Source** Endosulfan 2000 1298 High Acres Elevated levels of endosulfan in tissue. **Nonpoint Source** Mercury High 2000 Acres Nonpoint/Point Source

Appendix -58

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE Nickel Medium 2000 Acres Nonpoint/Point Source Nitrogen Low 2000 Acres 1298 Nonpoint/Point Source **PCBs** High 2000 Acres Elevated levels of PCBs in tissue. Nonpoint/Point Source **Sediment Toxicity** 2000 High Acres Nonpoint/Point Source Sedimentation/Siltation High 2000 Acres Nonpoint/Point Source Zinc Medium 2000 Acres Nonpoint/Point Source **CRYSTAL LAKE** 405.43 Org. enrichment/Low D.O. Low 5.8 Acres **Nonpoint Source** 405.15 **ECHO PARK LAKE** 23 Algae Low Acres **Nonpoint Source** 23 0194 1299 **Ammonia** Low Acres **Nonpoint Source** Copper Low 23 Acres **Nonpoint Source Eutrophic** Low 23 Acres **Nonpoint Source** 23 Lead Low Acres **Nonpoint Source** Odors Low 23 Acres **Nonpoint Source PCBs** Medium 23 Acres Elevated levels of PCBs in tissue. **Nonpoint Source** рΗ Medium 23 Acres **Nonpoint Source** Trash High 23 Acres **Nonpoint Source EL DORADO LAKES** 405.15 Algae Low 220 Acres **Nonpoint Source Ammonia** Low 220 Acres 0194 1299 **Nonpoint Source** Copper Low 220 Acres **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END **REGION TYPE** NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE **Eutrophic** Low 220 Acres **Nonpoint Source** Lead Low 220 Acres **Nonpoint Source** Mercury Medium 220 Acres Elevated levels of mercury in tissue. **Nonpoint Source** 220 рΗ Medium Acres **Nonpoint Source ELIZABETH LAKE** 403.51 **Eutrophic** Low 194 Acres **Nonpoint Source** Org. enrichment/Low D.O. Medium 194 Acres **Nonpoint Source** Medium pН 194 Acres **Nonpoint Source** Acres Trash Low 194 **Nonpoint Source** LAKE CALABASAS 405.21 28 **Ammonia** Low Acres **Nonpoint Source** Copper Medium 28 Acres Elevated levels of copper in tissue. **Nonpoint Source** DDT 28 High Acres Elevated levels of DDT in tissue. **Nonpoint Source** 28 **Eutrophic** Medium Acres **Nonpoint Source** Odors 28 Low Acres **Nonpoint Source** Org. enrichment/Low D.O. Medium 28 Acres **Nonpoint Source** рΗ Medium 28 Acres **Nonpoint Source** Zinc Low 28 Acres Elevated levels of zinc in tissue. **Nonpoint Source LAKE HUGHES** 403.51 Algae Low 34 Acres **Nonpoint Source Eutrophic** Medium 34 Acres **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END **REGION TYPE** NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Fish Kills Medium 34 Acres **Nonpoint Source** Odors Low 34 Acres **Nonpoint Source** Trash Low 34 Acres **Nonpoint Source LAKE LINDERO** 404.23 Algae Medium 13.56 Acres **Nonpoint Source** Chloride Low 13.56 Acres **Nonpoint Source Eutrophic** 1202 Medium 13.56 Acres 0193 **Nonpoint Source** Odors 13.56 Low Acres **Nonpoint Source** Selenium Low 13.56 Acres Elevated levels of selenium in tissue. **Nonpoint Source** Specific conductivity Low 13.56 Acres **Nonpoint Source** Trash Low 13.56 Acres **Nonpoint Source LAKE SHERWOOD** 404.26 Algae Medium 213 Acres **Nonpoint Source Ammonia** Low 213 Acres **Nonpoint Source** 0193 1202 **Eutrophic** Medium 213 Acres **Nonpoint Source** Mercury Medium 213 Acres Elevated levels of mercury in tissue. **Nonpoint Source** Org. enrichment/Low D.O. Medium 213 Acres **Nonpoint Source** 4 **LEGG LAKE** 405.41 **Ammonia** 70 Low Acres **Nonpoint Source** Copper Low 70 Acres **Nonpoint Source** Lead Low 70 Acres **Nonpoint Source** Odors Low 70 Acres **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE pН Medium 70 Acres **Nonpoint Source** Trash High 70 Acres **Nonpoint Source** LINCOLN PARK LAKE 405.15 **Ammonia** Low 7 0194 1299 Acres **Nonpoint Source** Eutrophic Medium 7 Acres **Nonpoint Source** Lead Low 7 Acres **Nonpoint Source** 7 Odors Low Acres **Nonpoint Source** Org. enrichment/Low D.O. Medium 7 Acres **Nonpoint Source** 7 Trash High Acres **Nonpoint Source** MACHADO LAKE (HARBOR PARK 405.12 LAKE) Algae Low 45.2 Acres **Nonpoint Source** 45.2 **Ammonia** Low Acres **Nonpoint Source** ChemA High 45.2 Acres Elevated levels of chemA pesticides in tissue. **Nonpoint Source** Chlordane High 45.2 Acres Elevated levels of chlordane in tissue. Fish Consumption Advisory for chlordane. **Nonpoint Source** DDT High 45.2 Acres Elevated levels of DDT in tissue. Fish Consumption Advisory for DDT. **Nonpoint Source** Dieldrin High 45.2 Acres Elevated levels of dieldrin in tissue. **Nonpoint Source Eutrophic** 45.2 Acres Low **Nonpoint Source** Odors 45.2 Low Acres **Nonpoint Source PCBs** High 45.2 Acres Elevated levels of PCBs in tissue. **Nonpoint Source** Trash Low 45.2 Acres **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE **MALIBOU LAKE** 404.24 Algae Medium 69 Acres **Nonpoint Source** Chlordane Low 69 Acres Elevated levels of chlordane in tissue. Nonpoint/Point Source Copper Medium 69 Acres Elevated levels of copper in tissue. **Nonpoint Source Eutrophic** Medium 69 Acres 0193 1202 **Nonpoint Source** Org. enrichment/Low D.O. Medium 69 Acres **Nonpoint Source PCBs** Low 69 Acres Elevated levels of PCBs in tissue. **Nonpoint Source MATILIJA RESERVOIR** 402.20 198 Fish barriers Low Acres **Dam Construction/Operation MCGRATH LAKE (ESTUARY)** 403.11 Chlordane High 1.35 Acres Elevated levels of chlordane in sediment. **Nonpoint Source** DDT Hiah 1.35 Acres Elevated levels of DDT in sediment. **Nonpoint Source Pesticides** High 1.35 Acres Elevated levels of pesticides (total) in sediment. **Nonpoint Source Sediment Toxicity** Medium 1.35 Acres **Nonpoint Source MUNZ LAKE** 403.51 **Eutrophic** Low 15 Acres **Nonpoint Source** Trash Low 15 Acres **Nonpoint Source PECK ROAD PARK LAKE** 405.41 Chlordane Medium 166 Acres Elevated levels of chlordane in tissue. **Nonpoint Source** DDT Medium 166 Acres Elevated levels of DDT in tissue. **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Lead Low 166 Acres **Nonpoint Source** Odors Low 166 Acres **Nonpoint Source** Org. enrichment/Low D.O. Medium 166 Acres **Nonpoint Source** Trash High 166 Acres **Nonpoint Source PUDDINGSTONE RESERVOIR** 405.52 4 Chlordane Medium 382 Acres Elevated levels of chlordane in tissue. **Nonpoint Source** Medium 382 Acres Elevated levels of DDT in tissue. **Nonpoint Source** Medium 382 Acres Elevated levels of mercury in tissue. **Nonpoint Source** Org. enrichment/Low D.O. 382 Medium Acres **Nonpoint Source PCBs** Medium 382 Acres Elevated levels of PCBs in tissue. **Nonpoint Source SANTA FE DAM PARK LAKE** 405.41 Copper Low 70 Acres **Nonpoint Source** Lead Low 70 Acres **Nonpoint Source** pН 70 Low Acres **Nonpoint Source WESTLAKE LAKE** 404.25 Medium 186 Acres Algae **Nonpoint Source Ammonia** Low 186 Acres **Nonpoint Source** Chlordane Low 186 Acres Elevated levels of chlordane in tissue. **Nonpoint Source** 186 Copper Medium Acres Elevated levels of copper in tissue. **Nonpoint Source Eutrophic** Medium 186 0193 1202 Acres **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME DATE UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE Lead Low 186 Acres **Nonpoint Source** Org. enrichment/Low D.O. Medium 186 Acres **Nonpoint Source** 4 R **ALISO CANYON WASH** 405.21 Selenium Low 10.13 Miles **Nonpoint Source ARROYO LAS POSAS REACH 1** 403.12 (LEWIS SOMIS RD TO FOX BARRANCA) **Ammonia** High 1.99 Miles 1298 Nonpoint/Point Source Chloride Medium 1.99 Miles 0197 1200 Nonpoint/Point Source DDT High 1.99 Miles 1298 Elevated levels of DDT in sediment. **Nonpoint Source Nitrate and Nitrite** Medium 1.99 Miles 1298 Nonpoint/Point Source Sulfates Medium 1.99 Miles Nonpoint/Point Source **Total Dissolved Solids** Medium 1.99 Miles 1298 Nonpoint/Point Source 4 R **ARROYO LAS POSAS REACH 2** 403.62 (FOX BARRANCA TO MOORPARK FWY (23)) **Ammonia** High 9.62 Miles 1298 Nonpoint/Point Source Chloride Medium Miles 0197 1200 9.62 Nonpoint/Point Source DDT High 9.62 Miles 1298 Elevated levels of DDT in sediment. **Nonpoint Source** 1298 **Nitrate and Nitrite** Medium 9.62 Miles Nonpoint/Point Source **Sulfates** Medium 9.62 Miles Nonpoint/Point Source **Total Dissolved Solids** Medium 9.62 Miles Nonpoint/Point Source R **ARROYO SECO REACH 1 (LA** 405.15 **RIVER TO WEST HOLLY AVE)** Algae Low 7.02 Miles **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME POLLUTANT/STRESSOR* UNIT SOURCE **PRIORITY** AFFECTED UNIT DATE DATE **High Coliform Count** Medium 7.02 Miles **Nonpoint Source** Trash High 7.02 Miles **Nonpoint Source** 4 **ARROYO SECO REACH 2 (WEST** 405.31 HOLLY AVE. TO DEVILS GATE DAM) Algae Low 2.53 Miles **Nonpoint Source High Coliform Count** Medium 2.53 Miles **Nonpoint Source** 2.53 Trash High Miles **Nonpoint Source ARROYO SIMI REACH 1** 403.62 4 R (MOORPARK FRWY (23) TO BREA CYN) **Ammonia** High 7.58 Miles 1298 Nonpoint/Point Source Boron Medium 7.58 Miles **Nonpoint Source** Chloride Medium 7.58 0197 1200 Miles **Nonpoint Source** Chromium 7.58 Miles Low Elevated levels of chromium in tissue. Nonpoint/Point Source Nickel 7.58 Miles Low Elevated levels of nickel in tissue. Nonpoint/Point Source Selenium Low 7.58 Miles Elevated levels of selenium in tissue. Nonpoint/Point Source Silver Low 7.58 Miles Elevated levels of silver in tissue. Nonpoint/Point Source Sulfates Medium 7.58 Miles **Nonpoint Source Total Dissolved Solids** Medium 7.58 Miles **Nonpoint Source** Zinc Low 7.58 Miles Elevated levels of zinc in tissue. Nonpoint/Point Source **ARROYO SIMI REACH 2 (ABOVE** R 403.67 **BREA CANYON) Boron** Medium 11.12 Miles **Nonpoint Source** Appendix -66

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

		1000 071=11 07111111 000(11) =10171112 11112						7.pp.0100 S) 002.71. 12a) 00				
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	R* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE		
				Sulfates		Medium	11.12	Miles				
					Nonpoint Source							
				Total Dissolved Solids		Medium	11.12	Miles				
					Nonpoint Source							
4	R	ASHLAND AVENUE DRAIN	405.13									
				High Coliform Count	N	High	0.57	Miles				
				Ora enrichment/Lemp	Nonpoint Source	1	0.57	Miles				
				Org. enrichment/Low D.	O. Nonpoint Source	Low	0.57	Miles				
				Toxicity	TOTAL OCUIO	Low	0.57	Miles				
					Nonpoint Source	20						
4	R	BALLONA CREEK	405.13		-							
7		D. LEVIN VILLI	700.10	Arsenic		Medium	4.3	Miles				
				Elevated levels of ars	enic in tissue.							
					Nonpoint/Point Source							
				Cadmium	lesions in a dissa :- t	Medium	4.3	Miles				
				Elevated levels of cad								
				ChemA	Nonpoint/Point Source	High	4.3	Miles				
					emA pesticides in tissue.	nign	4.3	willes				
					Nonpoint/Point Source							
				Chlordane	•	High	4.3	Miles				
				Elevated levels of chlo								
					Nonpoint/Point Source							
				Copper Elevated levels of cor	oner in tissue and sediment	Medium	4.3	Miles				
				Elevated levels of cop	pper in tissue and sediment. Nonpoint/Point Source							
				DDT	Nonpolitizedini Source	High	4.3	Miles				
				Elevated levels of DD	T in tissue.	111911	7.0					
					Nonpoint/Point Source							
				Dieldrin		High	4.3	Miles				
				Elevated levels of die								
				Fortenia Min	Nonpoint/Point Source		4.5					
				Enteric Viruses	Nonnaint/Paint Sauras	High	4.3	Miles				
				High Coliform Count	Nonpoint/Point Source	High	4.3	Miles				
				rngn comonn count	Nonpoint/Point Source	підіі	7.3	MILIES				
				Lead		Low	4.3	Miles				
					d in tissue and sediment.							
					Nonpoint/Point Source							
				PCBs	D	High	4.3	Miles				
				Elevated levels of PC								
				Sadiment Tayleity	Nonpoint/Point Source	Madiii	4.2	Miles				
				Sediment Toxicity	Nonpoint/Point Source	Medium	4.3	Miles				
* 0					Appendix 67							

Appendix -67

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Silver Low 4.3 Miles Elevated levels of silver in tissue and sediment. Nonpoint/Point Source **Toxicity** Medium 4.3 Miles Nonpoint/Point Source Trash High 4.3 Miles Nonpoint/Point Source Tributyltin Low Miles 4.3 Elevated levels of tributyltin in sediment. Nonpoint/Point Source **BALLONA CREEK ESTUARY** 405.13 **Arochlor** High 2.5 Miles Elevated levels of arochlor in sediment. Nonpoint/Point Source Chlordane High 2.5 Miles Elevated levels of chlordane in tissue and sediment. Nonpoint/Point Source DDT High 2.5 Miles Elevated levels of DDT in sediment. Nonpoint/Point Source **High Coliform Count** High 2.5 Miles Nonpoint/Point Source Lead 2.5 Miles Low Elevated levels of lead in sediment. Nonpoint/Point Source **PAHs** High 2.5 Miles Elevated levels of PAHs in sediment. Nonpoint/Point Source **PCBs** High 2.5 Miles Elevated levels of PCBs in tissue and sediment. Nonpoint/Point Source **Sediment Toxicity** Medium 2.5 Miles Nonpoint/Point Source Shellfish Harvesting Adv. Medium 2.5 Miles Nonpoint/Point Source Zinc Low 2.5 Miles Elevated levels of zinc in sediment. Nonpoint/Point Source **BEARDSLEY CHANNEL (ABOVE** 403.61 **CENTRAL AVENUE)** Algae Low 6.16 Miles 1298 **Nonpoint Source** ChemA High 6.16 Miles 1298 Elevated levels of chemA pesticides in tissue. **Nonpoint Source**

Appendix -68

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE Chlordane High 6.16 Miles 1298 Elevated levels of chlordane in tissue and sediment. Nonpoint Source Chlorpyrifos High 6.16 Miles 1298 Elevated levels of chlorpyrifos in tissue. **Nonpoint Source Dacthal** 1298 High 6.16 Miles Elevated levels of dacthal in sediment. **Nonpoint Source** DDT High 6.16 Miles 1298 Elevated levels of DDT in tissue and sediment. **Nonpoint Source** Dieldrin High 6.16 Miles 1298 Elevated levels of dieldrin in tissue. **Nonpoint Source** Endosulfan High 6.16 Miles 1298 Elevated levels of endosulfan in tissue and sediment. **Nonpoint Source** 1298 Nitrogen Medium 6.16 Miles **Nonpoint Source PCBs** High 6.16 Miles Elevated levels of PCBs in tissue. **Nonpoint Source** Toxaphene High 6.16 Miles 1298 Elevated levels of toxaphene in tissue and sediment. **Nonpoint Source Toxicity** High 6.16 Miles **Nonpoint Source** Trash Low 6.16 Miles **Nonpoint Source BELL CREEK** 405.21 **High Coliform Count** Low 9.81 Miles Nonpoint/Point Source **BROWN BARRANCA / LONG** R 403.11 **CANYON Nitrate and Nitrite** Medium 3.79 Miles **Nonpoint Source BURBANK WESTERN CHANNEL** 405.21 6.35 Miles Algae Low Nonpoint/Point Source **Ammonia** 6.35 0194 1299 High Miles Nonpoint/Point Source Cadmium Low 6.35 Miles Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Odors Low 6.35 Miles Nonpoint/Point Source Scum/Foam-unnatural Low 6.35 Miles Nonpoint/Point Source Trash High 6.35 Miles Nonpoint/Point Source **CALLEGUAS CREEK REACH 1** 403.11 (ESTUARY TO 0.5MI S OF **BROOME RD)** 2.2 **Ammonia** High Miles 1298 Nonpoint/Point Source 1298 ChemA High 2.2 Miles Elevated levels of chemA in tissue. **Nonpoint Source** Chlordane High 2.2 Miles 1298 Elevated levels of chlordane in tissue. **Nonpoint Source** DDT High 2.2 Miles 1298 Elevated levels of DDT in tissue and sediment. **Nonpoint Source** Endosulfan 2.2 Miles 1298 High Elevated levels of endosulfan in tissue. **Nonpoint Source** Nitrogen Medium 2.2 Miles 1298 Nonpoint/Point Source **PCBs** 2.2 Miles High Elevated levels of PCBs in tissue. Nonpoint/Point Source **Sediment Toxicity** Medium 2.2 Miles Nonpoint/Point Source Toxaphene High 2.2 Miles 1298 Elevated levels of toxaphene in tissue and sediment. **Nonpoint Source Toxicity** High 2.2 Miles Nonpoint/Point Source CALLEGUAS CREEK REACH 2 (0.5 403.12 R MIS OF BROOMERD TO **POTRERO RD Ammonia** High 2.3 Miles 1298 Nonpoint/Point Source ChemA High 2.3 1298 Miles Elevated levels of chemA pesticides in tissue.

Nonpoint Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

			HYDRO				SIZE		START	END
REGION	TYPE	NAME	UNIT	POLLUTANT/STRESSOR	R* SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
				Chlordane		High	2.3	Miles	1298	
				Elevated level of chlor		_				
					Nonpoint Source					
				Dacthal	Sallin Harry	High	2.3	Miles	1298	
				Elevated level of dacti						
				DDT	Nonpoint Source	l II auto	2.2	NA:1	4000	
				DDT Elevated level of DDT	「in tissue and sediment.	High	2.3	Miles	1298	
				Lievated level of DDT	Nonpoint Source					
				Endosulfan		High	2.3	Miles	1298	
				Elevated level of endo	sulfan in tissue.	9.1	~		00	
					Nonpoint Source					
				Nitrogen		Medium	2.3	Miles	1298	
					Nonpoint/Point Source					
				PCBs	a to the acce	High	2.3	Miles		
				Elevated level of PCB						
				Codiment Taxiale	Nonpoint/Point Source	Madis	2.2	NA:1		
				Sediment Toxicity	Nonpoint/Point Source	Medium	2.3	Miles		
				Toxaphene	Nonpomeronic Source	High	2.3	Miles	1298	
					phene in tissue and sediment.	riigii	2.3		1230	
					Nonpoint Source					
				Toxicity	-	High	2.3	Miles		
					Nonpoint/Point Source					
4	R	CALLEGUAS CREEK REACH 3 (POTRERO TO SOMIS RD)	403.12							
		•		Chloride		Medium	7.7	Miles	0197	1200
					Nonpoint/Point Source					
				Nitrate and Nitrite		Medium	7.7	Miles	1298	
					Nonpoint/Point Source					
				Total Dissolved Solids	Namaint/Daint C	Medium	7.7	Miles		
					Nonpoint/Point Source					
4	R	COMPTON CREEK	405.15							
				Copper		Low	8.52	Miles		
				III C. U.S. C. C.	Nonpoint/Point Source		0 = 0			
				High Coliform Count	Nonnoint/Doint Course	Medium	8.52	Miles		
				Load	Nonpoint/Point Source	Low	8.52	Miles		
				Lead	Nonpoint/Point Source	Low	0.32	Miles		
				pH		Medium	8.52	Miles		
				p	Nonpoint/Point Source	medialli	0.02	03		
					- 1 x					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **CONEJO CREEK / ARROYO** 403.64 **CONEJO NORTH FORK** Miles 1298 Ammonia Hiah 6.51 Nonpoint/Point Source Chlordane 1298 Medium 6.51 Miles Elevated levels of chlordane in tissue. **Nonpoint Source** DDT Medium 6.51 Miles 1298 Elevated levels of DDT in tissue. **Nonpoint Source** Sulfates Medium 6.51 Miles Nonpoint/Point Source **Total Dissolved Solids** Medium 6.51 Miles Nonpoint/Point Source CONEJO CREEK REACH 1 (CONFL 403.12 **CALL TO SANTA ROSA RD)** Algae Low 5.8 Miles 1298 Nonpoint/Point Source **Ammonia** 5.8 1298 High Miles Nonpoint/Point Source Cadmium Medium 5.8 Miles Elevated levels of cadmium in tissue. Nonpoint/Point Source 1298 ChemA 5.8 Miles High Elevated levels of chemA pesticides in tissue. **Nonpoint Source** Chromium Medium 5.8 Miles Elevated levels of chromium in tissue. Nonpoint/Point Source Dacthal High 5.8 Miles 1298 Elevated levels of dacthal in tissue. **Nonpoint Source** DDT High 5.8 Miles 1298 Elevated levels of DDT in tissue. **Nonpoint Source** Endosulfan High 5.8 Miles 1298 Elevated levels of endosulfan in tissue. **Nonpoint Source** Nickel Medium 5.8 Miles Elevated levels of nickel in tissue. Nonpoint/Point Source Org. enrichment/Low D.O. Medium 5.8 Miles Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME UNIT REGION TYPE POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Silver Medium 5.8 Miles Elevated levels of silver in tissue. Nonpoint/Point Source Sulfates Medium 5.8 Miles Nonpoint/Point Source **Total Dissolved Solids** Medium 5.8 Miles Nonpoint/Point Source Toxaphene Miles 1298 High 5.8 Elevated levels of toxaphene in tissue and sediment. **Nonpoint Source** High 5.8 Miles Toxicity Nonpoint/Point Source CONEJO CREEK REACH 2 (SANTA 403.63 ROSA RD TO THO. OAKS CITY LIMIT) 2.67 1298 Algae Low Miles Nonpoint/Point Source **Ammonia** High 2.67 Miles 1298 Nonpoint/Point Source Cadmium Medium 2.67 Miles Elevated levels of cadmium in tissue. Nonpoint/Point Source ChemA High 2.67 Miles 1298 Elevated levels of chemA pesticides in tissue. **Nonpoint Source** Chloride 0197 1200 Medium 2.67 Miles Nonpoint/Point Source Chromium Medium 2.67 Miles Elevated levels of chromium in tissue. Nonpoint/Point Source Dacthal High 2.67 Miles 1298 Elevated levels of dacthal in tissue. Nonpoint Source DDT High 2.67 Miles 1298 Elevated levels of DDT in tissue. **Nonpoint Source** Endosulfan High 2.67 Miles 1298 Elevated levels of endosulfan in tissue. **Nonpoint Source** Nickel Medium 2.67 Miles Elevated levels of nickel in tissue. Nonpoint/Point Source Org. enrichment/Low D.O. Medium 2.67 Miles

Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

		TOOG OALII	<u> </u>	A 000(d) LIGH AND TWIDE I KICKITT		OOHEDO	Approved by OSEFA.		12-May-99	
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				Silver		Medium	2.67	Miles		
				Elevated levels of silver in	n tissue.					
				N	onpoint/Point Source					
				Sulfates		Medium	2.67	Miles		
					onpoint/Point Source					
				Total Dissolved Solids		Medium	2.67	Miles		
					onpoint/Point Source	I II ada	0.07	N#11	4000	
				Toxaphene Elevated levels of toxanh	ene in tissue and sediment.	High	2.67	Miles	1298	
				•	onpoint Source					
				Toxicity	onpoint doubte	High	2.67	Miles		
					onpoint/Point Source	i iigii	2.01	Milios		
4	R	CONEJO CREEK REACH 3 (THOUSAND OAKS CITY LIMIT TO LYNN RD.)	403.64							
		,		Algae		Low	5.6	Miles	1298	
					onpoint/Point Source					
				Ammonia		High	5.6	Miles	1298	
				N	onpoint/Point Source					
				Cadmium		Medium	5.6	Miles		
				Elevated levels of cadmit						
					onpoint/Point Source	Himb	F.C	Miles	4000	
				ChemA Elevated levels of chemA	nesticides in tissue	High	5.6	Miles	1298	
					onpoint Source					
				Chromium		Medium	5.6	Miles		
				Elevated levels of chromi	ium in tissue.					
				N	onpoint/Point Source					
				Dacthal		High	5.6	Miles	1298	
				Elevated levels of dactha						
					onpoint Source				4000	
				DDT Elevated levels of DDT in	n tissue	High	5.6	Miles	1298	
					onpoint Source					
				Endosulfan	onpoint Jource	High	5.6	Miles	1298	
				Elevated levels of endosi	ulfan in tissue.	nign	5.0	MILLES	1230	
					onpoint Source					
				Nickel	•	Medium	5.6	Miles		
				Elevated levels of nickel	in tissue.					
				N	onpoint/Point Source					
				Org. enrichment/Low D.O.		Medium	5.6	Miles		
					onpoint/Point Source					
				Silver	n tina	Medium	5.6	Miles		
				Elevated levels of silver in	n tissue.					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Nonpoint/Point Source

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE **Sulfates** Medium 5.6 Miles Nonpoint/Point Source **Total Dissolved Solids** Medium 5.6 Miles Nonpoint/Point Source Toxaphene High 5.6 Miles 1298 Elevated levels of toxaphene in tissue and sediment. **Nonpoint Source Toxicity** High 5.6 Miles Nonpoint/Point Source CONEJO CREEK REACH 4 (ABOVE 403.68 LYNN RD.) Algae Low 4.98 Miles Nonpoint/Point Source Ammonia High 4.98 Miles 1298 Nonpoint/Point Source ChemA High 4.98 Miles 1298 Elevated levels of chemA pesticides in tissue. **Nonpoint Source** Chloride Medium 4.98 Miles 0197 1200 Nonpoint/Point Source Dacthal 1298 High 4.98 Miles Elevated levels of dacthal in tissue. **Nonpoint Source** DDT High 4.98 Miles 1298 Elevated levels of DDT in tissue. **Nonpoint Source** Endosulfan High 4.98 Miles 1298 Elevated levels of endosulfan in tissue. **Nonpoint Source** Org. enrichment/Low D.O. Medium 4.98 Miles Nonpoint/Point Source Sulfates Miles Medium 4.98 Nonpoint/Point Source **Total Dissolved Solids** Medium 4.98 Miles Nonpoint/Point Source 1298 Toxaphene High 4.98 Miles Elevated levels of toxaphene in tissue and sediment. **Nonpoint Source Toxicity** High 4.98 Miles Nonpoint/Point Source **COYOTE CREEK** 405.15 **Abnormal Fish Histology** Medium 13.45 Miles Nonpoint/Point Source Medium 13.45 Miles Algae Nonpoint/Point Source Appendix -75

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

			HYDRO				SIZE		START	END
REGION	TYPE	NAME	UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
				Ammonia		High	13.45	Miles		
					Nonpoint/Point Source	p.s	40.45			
				High Coliform Count	Nonnaint/Baint Sauras	Medium	13.45	Miles		
				Silver	Nonpoint/Point Source	Medium	13.45	Miles		
				Elevated levels of silver	in tissue.	wealum	13.45	willes		
					Nonpoint/Point Source					
	P	DOMINGUEZ CHANNEL (ABOVE	ADE 40							
4	R	DOMINGUEZ CHANNEL (ABOVE VERMONT)	405.12							
		<i>,</i>		Aldrin		Medium	9	Miles		
				Elevated levels of aldrin	in tissue.		J			
					Nonpoint/Point Source					
				Ammonia		Low	9	Miles		
					Nonpoint/Point Source					
				ChemA	A nocticity - 1 "	High	9	Miles		
				Elevated levels of chem	·					
					Nonpoint/Point Source		^	R#:! -		
				Chlordane Elevated levels of chlord	dane in tissue	High	9	Miles		
					Nonpoint/Point Source					
				Chromium	pomer out oource	Medium	9	Miles		
				Elevated levels of chron	nium in sediment.	mount	•			
					Nonpoint/Point Source					
				Copper		Low	9	Miles		
					Nonpoint/Point Source					
				DDT		High	9	Miles		
				Elevated levels of DDT						
					Nonpoint/Point Source	_				
				Dieldrin Flevated levels of dieldr	in in tissue	Medium	9	Miles		
				Elevated levels of dieldr						
					Nonpoint/Point Source	Law	ο.	Miles		
				High Coliform Count	Nonpoint/Point Source	Low	9	IVIIIES		
				Lead	pomer out ooutce	Low	9	Miles		
				Elevated levels of lead i	in tissue.	LOW	9	63		
					Nonpoint/Point Source					
				PAHs		High	9	Miles		
				Elevated levels of PAHs		J		-		
					Nonpoint/Point Source					
				PCBs	to the	High	9	Miles		
				Elevated levels of PCBs						
					Nonpoint/Point Source		_	Be::		
				Zinc Elevated levels of zinc in	n sediment	High	9	Miles		
					n seaiment. Nonpoint/Point Source					
					MOUDOUINEOUIL SOURCE					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

		1998 CALIF	ORNIA	303(d) LIST AND TMDL PRIORITY SCHEDULE				Approved by USEPA:		12-May-99
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	DOMINGUEZ CHANNEL ESTUARY (TO VERMONT)	405.12							
				Aldrin Elevated levels of aldrin in		Medium	8.4	Miles		
				No Ammonia	onpoint/Point Source	Low	8.4	Miles		
					onpoint/Point Source		C. .			
				Benthic Comm. Effects	onpoint/Point Source	High	8.4	Miles		
				ChemA Elevated levels of chemA	nesticides in tissue	High	8.4	Miles		
					onpoint/Point Source					
				Chlordane Elevated levels of chlorda		High	8.4	Miles		
				No Chromium Elevated levels of chromiu	onpoint/Point Source	Medium	8.4	Miles		
					onpoint/Point Source					
				Copper		Low	8.4	Miles		
				DDT Elevated levels of DDT in	onpoint/Point Source tissue and sediment.	High	8.4	Miles		
					onpoint/Point Source					
				Dieldrin Elevated levels of dieldrin		Medium	8.4	Miles		
				No High Coliform Count	onpoint/Point Source	Low	8.4	Miles		
					onpoint/Point Source	LOW	0.4	Willes		
				Lead Elevated levels of lead in a	tissue.	Low	8.4	Miles		
					onpoint/Point Source					
				PAHs Elevated levels of PAHs in		High	8.4	Miles		
				PCBs	onpoint/Point Source	High	8.4	Miles		
				Elevated levels of PCBs in	n tissue. onpoint/Point Source					
				Zinc	•	High	8.4	Miles		
				Elevated levels of zinc in S	sediment. onpoint/Point Source					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **DUCK POND AGRICULTURAL** 403.11 DRAIN/MUGU DRAIN/OXNARD DR ChemA High 13.5 Miles 1298 Elevated levels of chemA pesticides in tissue. **Nonpoint Source** Chlordane High 13.5 Miles 1298 Elevated levels of chlordane in tissue. **Nonpoint Source** DDT High 13.5 Miles 1298 Elevated levels of DDT in tissue and sediment. **Nonpoint Source** Medium 13.5 1298 Nitrogen Miles **Nonpoint Source Sediment Toxicity** Medium 13.5 Miles **Nonpoint Source** Toxaphene High 13.5 Miles 1298 Elevated levels of toxaphene in tissue. **Nonpoint Source Toxicity** High 13.5 Miles **Nonpoint Source** R **FOX BARRANCA** 403.62 **Boron** Medium 3.03 Miles **Nonpoint Source Nitrate and Nitrite** Medium 3.03 Miles 1298 **Nonpoint Source Sulfates** Medium 3.03 Miles **Nonpoint Source Total Dissolved Solids** Medium 3.03 Miles **Nonpoint Source** LAS VIRGENES CREEK 404.22 **High Coliform Count** High 11.47 Miles **Nonpoint Source** Nutrients (Algae) Medium 11.47 Miles 0193 1202 **Nonpoint Source** Org. enrichment/Low D.O. Medium 11.47 Miles **Nonpoint Source** Scum/Foam-unnatural Low 11.47 Miles **Nonpoint Source** Selenium 11.47 Miles Low **Nonpoint Source** Trash Low 11.47 Miles **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **LINDERO CREEK REACH 1** 404.23 2.2 Algae Medium Miles **Nonpoint Source High Coliform Count** 2.2 Miles Hiah **Nonpoint Source** 2.2 Miles Scum/Foam-unnatural Low **Nonpoint Source** Selenium 2.2 Miles Low **Nonpoint Source** Trash Low 2.2 Miles **Nonpoint Source** R **LINDERO CREEK REACH 2** 404.23 4 (ABOVE LAKE) Algae Medium 4.8 Miles **Nonpoint Source High Coliform Count** High 4.8 Miles **Nonpoint Source** Scum/Foam-unnatural Low 4.8 Miles **Nonpoint Source** Selenium Low 4.8 Miles **Nonpoint Source** Trash 4.8 Miles Low **Nonpoint Source** R **LOS ANGELES RIVER REACH 1** 405.12 (ESTUARY TO CARSON STREET) 2.01 0194 1299 **Ammonia** High Miles Nonpoint/Point Source **High Coliform Count** Medium 2.01 Miles Nonpoint/Point Source Lead Low 2.01 Miles Nonpoint/Point Source Nutrients (Algae) Medium 2.01 Miles 0194 1299 Nonpoint/Point Source pН 2.01 Miles Medium Nonpoint/Point Source Scum/Foam-unnatural 2.01 Miles Low Nonpoint/Point Source Trash High 2.01 Miles Nonpoint/Point Source R LOS ANGELES RIVER REACH 2 405.15 (CARSON TO FIGUEROA STREET) **Ammonia** High 19.37 Miles 0194 1299 Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END **REGION TYPE** NAME UNIT **POLLUTANT/STRESSOR*** SOURCE PRIORITY AFFECTED UNIT DATE DATE **High Coliform Count** Medium 19.37 Miles Nonpoint/Point Source Lead Low 19.37 Miles Nonpoint/Point Source Nutrients (Algae) Medium 19.37 Miles 0194 1299 Nonpoint/Point Source Odors Low 19.37 Miles Nonpoint/Point Source Oil Medium 19.37 Miles Nonpoint/Point Source Scum/Foam-unnatural 19.37 Miles Low Nonpoint/Point Source 19.37 Trash High Miles Nonpoint/Point Source 4 R LOS ANGELES RIVER REACH 3 405.21 (FIGUEROA ST TO RIVERSIDE DR.) **Ammonia** High 7.24 Miles 0194 1299 Nonpoint/Point Source Nutrients (Algae) Medium 7.24 Miles 0194 1299 Nonpoint/Point Source Odors 7.24 Miles Low Nonpoint/Point Source Miles Scum/Foam-unnatural 7.24 Low Nonpoint/Point Source Trash 7.24 Miles High Nonpoint/Point Source R **LOS ANGELES RIVER REACH 4** 4 405.21 (SEPUVEDA DR. TO SEPULVEDA DAM) **Ammonia** High 11.84 Miles 0194 1299 Nonpoint/Point Source **High Coliform Count** Medium Miles 11.84 Nonpoint/Point Source Lead Low 11.84 Miles Nonpoint/Point Source Nutrients (Algae) Medium 11.84 Miles 0194 1299 Nonpoint/Point Source Odors Low 11.84 Miles Nonpoint/Point Source Scum/Foam-unnatural Low 11.84 Miles Nonpoint/Point Source Trash Miles High 11.84 Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **LOS ANGELES RIVER REACH 5** 405.21 (AT SEPULVEDA BASIN) **Ammonia** 1.93 Miles 0194 1299 Hiah Nonpoint/Point Source ChemA Medium 1.93 Miles Nonpoint/Point Source Chlorpyrifos Medium 1.93 Miles Elevated levels of chlorpyrifos in tissue. Nonpoint/Point Source Medium 1.93 Miles 0194 1299 Nutrients (Algae) Nonpoint/Point Source Odors Low 1.93 Miles Nonpoint/Point Source Oil Miles Low 1.93 Nonpoint/Point Source Scum/Foam-unnatural 1.93 Miles Low Nonpoint/Point Source Trash 1.93 Miles High Nonpoint/Point Source 4 R LOS ANGELES RIVER REACH 6 405.21 (ABOVE SEPULVEDA FLD CNTRL BASIN) Dichloroethylene/1,1-DCE Low 6.17 Miles **Nonpoint Source High Coliform Count** 6.17 Miles Low **Nonpoint Source** Tetrachloroethylene/PCE Low 6.17 Miles **Nonpoint Source** Trichloroethylene/TCE Low 6.17 Miles **Nonpoint Source** R **MALIBU CREEK** 404.21 Fish barriers 9.5 Miles Low **Dam Construction/Operation High Coliform Count** 9.5 Miles High Nonpoint/Point Source Nutrients (Algae) Medium 9.5 Miles 0193 1202 Nonpoint/Point Source Scum/Foam-unnatural Low 9.5 Miles Nonpoint/Point Source Trash 9.5 Miles Low **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R MATILIJA CREEK REACH 1 (JCT. 402.20 WITH N. FORK TO RESERVOIR) Fish barriers Low 1.6 Miles **Dam Construction/Operation** 402.20 4 R **MATILIJA CREEK REACH 2** (ABOVE RESERVOIR) Fish barriers Low 16.8 Miles **Dam Construction/Operation MEDEA CREEK REACH 1 (LAKE** 404.23 TO CONFL. WITH LINDERO) Algae Medium 3.01 Miles **Nonpoint Source High Coliform Count** Hiah 3.01 Miles **Nonpoint Source** Selenium Low 3.01 Miles **Nonpoint Source** Trash 3.01 Miles Low **Nonpoint Source** R **MEDEA CREEK REACH 2 (ABV** 404.24 **COFL. WITH LINDERO)** Algae Medium 5.44 Miles **Nonpoint Source High Coliform Count** High 5.44 Miles **Nonpoint Source** Selenium Low Miles 5.44 **Nonpoint Source** Trash Low 5.44 Miles **Nonpoint Source** R **MINT CANYON CREEK REACH 1** 403.51 4 (CONFL TO ROWLER CYN) **Nitrate and Nitrite** 8.16 Miles Medium **Nonpoint Source** R **MONROVIA CANYON CREEK** 405.33 Lead Low 2.09 Miles **Nonpoint Source** PALO COMADO CREEK 404.23 **High Coliform Count** High 7.78 Miles **Nonpoint Source** R **PICO KENTER DRAIN** 405.13 **Ammonia** Low 4.77 Miles **Nonpoint Source** Copper Medium 4.77 Miles **Nonpoint Source** Appendix -82

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE **Enteric Viruses** High 4.77 Miles **Nonpoint Source High Coliform Count** High 4.77 Miles **Nonpoint Source** Lead Low 4.77 Miles **Nonpoint Source PAHs** High 4.77 Miles **Nonpoint Source Toxicity** Medium 4.77 Miles **Nonpoint Source** Trash Low 4.77 Miles **Nonpoint Source** 4 **REVOLON SLOUGH MAIN BRANCH 403.11** (MUGU LAGOON TO CENTRAL AVENUE) Algae 8.9 1298 Low Miles **Nonpoint Source** ChemA High 8.9 Miles 1298 Elevated levels of chemA pesticides in tissue. **Nonpoint Source** Chlordane High 8.9 1298 Miles Elevated levels of chlordane in tissue and sediment. **Nonpoint Source** Chlorpyrifos 8.9 Miles 1298 High Elevated levels of chlorpyrifos in tissue. **Nonpoint Source** Dacthal 8.9 Miles 1298 High Elevated levels of dacthal in sediment. **Nonpoint Source** DDT High 8.9 Miles 1298 Elevated levels of DDT in tissue and sediment. **Nonpoint Source** Dieldrin High 8.9 Miles 1298 Elevated levels of dieldrin in tissue. **Nonpoint Source** Endosulfan High 8.9 Miles 1298 Elevated levels of endosulfan in tissue and sediment. **Nonpoint Source** Nitrogen Medium 8.9 Miles 1298 **Nonpoint Source PCBs** High 8.9 Miles Elevated levels of PCBs in tissue. **Nonpoint Source** Selenium Low 8.9 Miles **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Toxaphene High 8.9 Miles 1298 Elevated levels of toxaphene in tissue and sediment. **Nonpoint Source Toxicity** High 8.9 Miles **Nonpoint Source** Trash Low 8.9 Miles **Nonpoint Source** R **RIO DE SANTA CLARA/OXNARD** 403.11 4 DRAIN#3 ChemA 2.48 1298 High Miles Elevated levels of chemA pesticides in tissue. **Nonpoint Source** Chlordane High 2.48 Miles 1298 Elevated levels of chlordane in tissue. **Nonpoint Source** DDT High 2.48 Miles 1298 Elevated levels of DDT in tissue. **Nonpoint Source** Nitrogen 2.48 Miles 1298 Low **Nonpoint Source PCBs** High 2.48 Miles Elevated levels of PCBs in tissue. **Nonpoint Source Sediment Toxicity** Miles High 2.48 **Nonpoint Source** Toxaphene High 2.48 Miles 1298 Elevated levels of toxaphene in tissue. **Nonpoint Source** RIO HONDO REACH 1 (CONFL. LA 405.15 **RIVER TO SNT ANA FWY) Ammonia** Low 4.19 Miles 0194 1299 Nonpoint/Point Source Copper Low 4.19 Miles Nonpoint/Point Source **High Coliform Count** Miles Low 4.19 Nonpoint/Point Source Miles Lead Low 4.19 Nonpoint/Point Source рΗ 4.19 Miles Low Nonpoint/Point Source Trash High 4.19 Miles Nonpoint/Point Source Zinc Low 4.19 Miles Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **RIO HONDO REACH 2 (AT** 405.15 **SPREADING GROUNDS)** Medium 2.71 Miles 0194 1299 Ammonia Nonpoint/Point Source 2.71 **High Coliform Count** Low Miles Nonpoint/Point Source R SAN GABRIEL RIVER EAST FORK 405.43 Trash High 12 Miles **Nonpoint Source** SAN GABRIEL RIVER ESTUARY 405.15 **Abnormal Fish Histology** Medium 2.95 Miles Nonpoint/Point Source **Arsenic** 2.95 Miles Low Elevated levels of arsenic in tissue. Nonpoint/Point Source **SAN GABRIEL RIVER REACH 1** 405.15 (ESTUARY TO FIRESTONE) Abnormal Fish Histology Medium 8.73 Miles Nonpoint/Point Source Algae Medium 8.73 Miles Nonpoint/Point Source **Ammonia** High 8.73 Miles Nonpoint/Point Source **High Coliform Count** Low 8.73 Miles Nonpoint/Point Source **Toxicity** Medium 8.73 Miles Nonpoint/Point Source **SAN GABRIEL RIVER REACH 2** R 405.15 (FIRESTONE TO WHITTIER **NARROWS DAM Ammonia** High 9.99 Miles Nonpoint/Point Source **High Coliform Count** Low 9.99 Miles Nonpoint/Point Source Lead Low 9.99 Miles Nonpoint/Point Source **SAN GABRIEL RIVER REACH 3** 405.41 (WHITTIER NARROWS TO RAMONA) **Toxicity** Medium 3.52 Miles Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

		1000 071211	<u> </u>	1000(a) Elot Alt				прртогоа	DY USLFA.	12-Way-99
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
4	R	SAN JOSE CREEK REACH 1 (SG CONFL. TO TEMPLE STREET)	405.41							
		CONFL. TO TEMPLE STREET)		Algae	Nonnaint/Paint Source	Medium	13.12	Miles		
				Ammonia	Nonpoint/Point Source Nonpoint/Point Source	High	13.12	Miles		
				High Coliform Count	Nonpoint/Point Source	Low	13.12	Miles		
4	R	SAN JOSE CREEK REACH 2	405.51		Nonpombr ont cource					
		(TEMPLE TO I-10 AT WHITE AVE.)		Algae	Nonpoint/Point Source	Medium	4.93	Miles		
				Ammonia	Nonpoint/Point Source	High	4.93	Miles		
				High Coliform Count	Nonpoint/Point Source	Low	4.93	Miles		
4	R	SANTA CLARA RIVER ESTUARY	403.11		Nonpolital olit course					
4	ĸ	SANTA CLARA RIVER ESTUART	403.11	ChemA	Nonpoint Source	Medium	2.07	Miles		
				High Coliform Count	Nonpoint Source	Low	2.07	Miles		
				Toxaphene	Nonpoint Source	Medium	2.07	Miles		
4	R	SANTA CLARA RIVER REACH 3 (DAM TO ABV SP CRK/BLW TIMBER CYN)	403.21							
				Ammonia		Medium	13.24	Miles		
				Chloride	Nonpoint/Point Source	Medium	13.24	Miles	1297	
4	R	SANTA CLARA RIVER REACH 7	403.51		Nonpoint/Point Source					
		(BLUE CUT TO WEST PIER HWY 99	')	Ammonia	Nonpoint/Point Source	Medium	9.21	Miles		
				Chloride Chloride was relisted b	y USEPA	Medium	9.21	Miles	1297	
				High Coliform Count	Nonpoint/Point Source	Low	9.21	Miles		
				Nitrate and Nitrite	Nonpoint/Point Source	Medium	9.21	Miles		
					Nonpoint/Point Source					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **SANTA CLARA RIVER REACH 8-W** 403.51 PIER HY 99 TO BOUQUET CYN RD **BRG** 3.42 **Ammonia** Medium Miles Nonpoint/Point Source Chloride Medium 3.42 Miles 1297 Chloride was relisted by USEPA. Nonpoint/Point Source **High Coliform Count** 3.42 Miles Low Nonpoint/Point Source **Nitrate and Nitrite** Medium 3.42 Miles Nonpoint/Point Source Org. enrichment/Low D.O. 3.42 Miles Medium Nonpoint/Point Source R **SANTA CLARA RIVER REACH 9** 403.51 (BOUQUET CYN RD.TO ABV LANG GAGNG) **High Coliform Count** 12.69 Miles Low Nonpoint/Point Source 405.13 R **SANTA MONICA CANYON High Coliform Count** High 2.9 Miles **Nonpoint Source** Lead 2.9 Miles Low **Nonpoint Source SEPULVEDA CANYON** 405.13 **Ammonia** Low 6.8 Miles **Nonpoint Source High Coliform Count** High 6.8 Miles **Nonpoint Source** 6.8 Miles Lead Low **Nonpoint Source** STOKES CREEK 404.22 R **High Coliform Count** High 5.33 Miles **Nonpoint Source TAPO CANYON REACH 1** 403.67 Medium 5.23 **Boron** Miles Nonpoint/Point Source Chloride Medium 5.23 Miles 0197 1200 Nonpoint/Point Source **Sulfates** Medium 5.23 Miles Nonpoint/Point Source **Total Dissolved Solids** Medium 5.23 Miles Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **TOPANGA CANYON CREEK** 404.11 8.6 Lead Low Miles **Nonpoint Source TORRANCE CARSON CHANNEL** 405.12 12.6 Miles Copper Low **Nonpoint Source High Coliform Count** Medium 12.6 Miles **Nonpoint Source** Lead Low 12.6 Miles **Nonpoint Source TORREY CANYON CREEK** 403.41 **Nitrate and Nitrite** Medium 1.7 Miles **Nonpoint Source** R TRIUNFO CANYON CREEK REACH 404.24 Lead Low 4.06 Miles **Nonpoint Source** Mercury Low 4.06 Miles **Nonpoint Source** 4 R TRIUNFO CANYON CREEK REACH 404.25 Lead Low 1.98 Miles **Nonpoint Source** 1.98 Miles Mercury Low **Nonpoint Source TUJUNGA WASH (LA RIVER TO** 405.21 **HANSEN DAM) Ammonia** Medium 9.68 Miles 0194 1299 **Nonpoint Source** Copper Medium 9.68 Miles **Nonpoint Source High Coliform Count** 9.68 Miles Low **Nonpoint Source** Odors Low 9.68 Miles **Nonpoint Source** Scum/Foam-unnatural Low 9.68 Miles **Nonpoint Source** Trash High 9.68 Miles **Nonpoint Source** R **VENTURA RIVER ESTUARY** 402.10 0.35 Miles Algae Low Nonpoint/Point Source

Appendix -88

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE DDT Medium 0.35 Miles Elevated levels of DDT in tissue. Nonpoint/Point Source **Eutrophic** Low 0.35 Miles Nonpoint/Point Source Low Trash 0.35 Miles Nonpoint/Point Source R **VENTURA RIVER REACH 1** 402.10 4 (ESTUARY TO MAIN STREET) 0.18 Algae Low Miles Nonpoint/Point Source Copper 0.18 Miles Low Elevated levels of copper in tissue. Nonpoint/Point Source Silver Medium 0.18 Miles Elevated levels of silver in tissue. Nonpoint/Point Source Zinc 0.18 Miles Low Elevated levels of zinc in tissue. Nonpoint/Point Source **VENTURA RIVER REACH 2 (MAIN** 402.10 ST. TO WELDON CANYON) Algae Low 4.64 Miles Nonpoint/Point Source Miles Copper Low 4.64 Elevated levels of copper in tissue. Nonpoint/Point Source Selenium 4.64 Miles Low Elevated levels of selenium in tissue. Nonpoint/Point Source Silver Medium 4.64 Miles Elevated levels of silver in tissue. Nonpoint/Point Source Zinc Low 4.64 Miles Elevated levels of zinc in tissue. Nonpoint/Point Source **VENTURA RIVER REACH 3** 402.10 (WELDON CANYON TO CONFL. W/ COYOTE CR) Pumping Low 0.78 Miles **Nonpoint Source Water Diversion** 0.78 Miles Low **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE R **VENTURA RIVER REACH 4** 402.20 (COYOTE CREEK TO CAMINO CIELO RD. 14.94 Pumping Low Miles **Nonpoint Source Water Diversion** Low 14.94 Miles **Nonpoint Source VERDUGO WASH REACH 1 (LA** 405.21 **RIVER TO VERDUGO RD.)** Algae Low 3.41 Miles **Nonpoint Source High Coliform Count** Miles Low 3.41 **Nonpoint Source** Trash High 3.41 Miles **Nonpoint Source VERDUGO WASH REACH 2** 405.24 4 (ABOVE VERDUGO ROAD) Algae Low 5.55 Miles **Nonpoint Source High Coliform Count** Low 5.55 Miles **Nonpoint Source** Trash High 5.55 Miles **Nonpoint Source WALNUT CREEK WASH (DRAINS** 405.41 FROM PUDDINGSTONE **RESERVOIR** рΗ High 13.9 Miles Nonpoint/Point Source **Toxicity** Medium 13.9 Miles Nonpoint/Point Source R WHEELER CANYON / TODD 403.21 **BARRANCA Nitrate and Nitrite** Medium 4.17 Miles **Nonpoint Source** 4 R WILMINGTON DRAIN 405.12 **Ammonia** Medium 4.9 Miles **Nonpoint Source** Copper Low 4.9 Miles **Nonpoint Source High Coliform Count** Low 4.9 Miles **Nonpoint Source** Lead Low 4.9 Miles **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END POLLUTANT/STRESSOR* REGION TYPE NAME UNIT SOURCE PRIORITY **AFFECTED** UNIT DATE DATE т **BALLONA CREEK WETLANDS** 405.13 Arsenic Medium 86 Acres Elevated levels of arsenic in tissue. **Nonpoint Source Exotic Vegetation** Low 86 Acres **Nonpoint Source Habitat alterations** 86 Acres Low **Nonpoint Source** Hydromodification 86 Low Acres **Nonpoint Source Reduced Tidal Flushing** Low 86 Acres **Nonpoint Source** Trash High 86 Acres **Nonpoint Source** 405.12 **COLORADO LAGOON** Chlordane High 13.6 Acres Elevated levels of chlordane in tissue and sediment. **Nonpoint Source** DDT High 13.6 Acres Elevated levels of DDT in tissue. **Nonpoint Source** Dieldrin Medium 13.6 Acres Elevated levels of dieldrin in tissue. **Nonpoint Source** Lead Medium 13.6 Acres Elevated levels of lead in tissue and sediment. **Nonpoint Source PAHs** High 13.6 Acres Elevated levels of PAHs in sediment. **Nonpoint Source PCBs** High 13.6 Acres Elevated levels of PCBs in tissue. **Nonpoint Source Sediment Toxicity** Medium 13.6 Acres **Nonpoint Source** Zinc Medium 13.6 Acres Elevated levels of zinc in sediment. **Nonpoint Source** Т LOS CERRITOS CHANNEL 405.15 16 Ammonia Low Acres **Nonpoint Source** Copper 16 Low Acres **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE **High Coliform Count** Low 16 Acres **Nonpoint Source** Lead Low 16 Acres **Nonpoint Source** Zinc Medium 16 Acres **Nonpoint Source DELTA WATERWAYS** 544.000 Chlorpyrifos High 480000 Acres 0198 1205 Agriculture **Urban Runoff/Storm Sewers** DDT Low 480000 Acres 0104 1211 **Agriculture** 1205 Diazinon Hiah 480000 Acres 0198 Agriculture **Urban Runoff/Storm Sewers Electrical Conductivity** Medium 16000 0101 1211 Acres **Agriculture Group A Pesticides** Low 480000 Acres 0104 1211 Agriculture Mercury High 480000 0198 1205 Acres Resource extraction sources are abandoned mines. **Resource Extraction** Org. enrichment/Low D.O. High 75 0101 1211 Acres **Municipal Point Sources Urban Runoff/Storm Sewers Unknown Toxicity** Medium 480000 Acres 0101 1211 Source Unknown 5 512.210 **BERRYESSA LAKE** Mercury High 20700 Acres 0198 1205 **Resource Extraction CLEAR LAKE** 5 513.520 Mercury High 43000 Acres 0198 1205 **Resource Extraction** 43000 **Nutrients** Low Acres 0104 1211 Source Unknown 5 513.320 **DAVIS CREEK RES** Mercury Medium 290 Acres 0198 1211 **Resource Extraction** 5 **KESWICK RES** 524.400 Cadmium Medium 200 Acres 0198 1211 **Resource Extraction** Copper Medium 200 0198 1211 Acres **Resource Extraction**

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99 **HYDRO** SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Zinc Medium 200 Acres 0198 1211 **Resource Extraction** 5 MARSH CREEK RES 543.000 375 Mercury Medium Acres 0198 1211 Resource Extraction 5 SHASTA LAKE 506.100 Cadmium Low 20 Acres 0104 1211 **Resource Extraction** 20 Copper Low Acres 0104 1211 **Resource Extraction** Zinc Low 20 Acres 0104 1211 **Resource Extraction** 5 WHISKEYTOWN RES 524.610 **High Coliform Count** Low 100 Acres 0104 1211 Septage Disposal 5 R **AMERICAN RIVER, LOWER** 519.210 **Group A Pesticides** Low 23 Miles 0104 1211 **Urban Runoff/Storm Sewers** Mercury Medium 23 Miles 0101 1211 Resource extraction sources are abandoned mines. Resource Extraction **Unknown Toxicity** 23 Miles 0104 1211 Low Source Unknown 5 R **ARCADE CREEK** 519.210 Chlorpyrifos Medium 10 1211 Miles 0198 **Urban Runoff/Storm Sewers** 10 Diazinon Miles 0198 1211 Medium The agricultural source of diazinon for these waterbodies is from aerial deposition. Agriculture **Urban Runoff/Storm Sewers** 5 R **CACHE CREEK** 511.300 High 35 1205 Miles 0196 Resource extraction sources are abandoned mines. **Resource Extraction Unknown Toxicity** Medium 35 Miles 0101 1211 Source Unknown 5 R 519.210 **CHICKEN RANCH SLOUGH** Chlorpyrifos Medium 5 Miles 0198 1211

Urban Runoff/Storm Sewers

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE Diazinon Medium 5 Miles 0198 1211 The agricultural source of diazinon for these waterbodies is from aerial deposition. **A**ariculture **Urban Runoff/Storm Sewers COLUSA DRAIN** 520.210 5 R Carbofuran/Furadan Medium 70 Miles 0101 1211 **Agriculture** Miles **Group A Pesticides** Medium 70 0101 1211 Agriculture Malathion Medium 70 0101 1211 Miles **Agriculture Methyl Parathion** Medium 70 Miles 0101 1211 Agriculture **Unknown Toxicity** 70 Medium Miles 0101 1211 Agriculture 5 R **DOLLY CREEK** 518.540 Medium 0101 1211 Copper 1 Miles Resource extraction sources are abandoned mines. **Resource Extraction** Zinc Medium 1 Miles 0101 1211 Resource extraction sources are abandoned mines. **Resource Extraction** 5 **DUNN CREEK** 543.000 Mercurv Low 9 Miles 0104 1211 Resource extraction sources are abandoned mines. Resource Extraction Metals 9 Miles 0104 1211 Low Resource extraction sources are abandoned mines. **Resource Extraction** 5 R **ELDER CREEK** 519.120 Chlorpyrifos Medium 10 Miles 0198 1211 **Urban Runoff/Storm Sewers** Diazinon Medium 10 0198 1211 Miles The agricultural source of diazinon for these waterbodies is from aerial deposition. **Agriculture Urban Runoff/Storm Sewers** 5 **ELK GROVE CREEK** 519.110 Diazinon 0198 1211 Miles The agricultural source of diazinon for these waterbodies is from aerial deposition. **Agriculture Urban Runoff/Storm Sewers**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME **PRIORITY** REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **AFFECTED** UNIT DATE DATE 5 R **FALL RIVER (PIT)** 526.400 25 Sedimentation/Siltation Medium Miles 0104 1211 Agriculture-grazing Highway/Road/Bridge Construction Silviculture 5 519.220 **FEATHER RIVER, LOWER** Diazinon High 60 1205 Miles 0198 Agriculture **Urban Runoff/Storm Sewers Group A Pesticides** Low 60 Miles 0104 1211 Agriculture Mercury Medium 60 Miles 0101 1211 Resource extraction sources are abandoned mines. **Resource Extraction Unknown Toxicity** 60 0101 1211 Medium Miles Source Unknown 5 R **FIVE MILE SLOUGH** 544.000 Chlorpyrifos Medium 1 Miles 0198 1211 **Urban Runoff/Storm Sewers** Diazinon Medium 1 Miles 0198 1211 The agricultural source of diazinon for these waterbodies is from aerial deposition. **Agriculture Urban Runoff/Storm Sewers** 5 R **FRENCH RAVINE** 516.320 **Bacteria** Low 1 Miles 0104 1211 **Land Disposal** HARDING DRAIN (TURLOCK IRR 5 R 535.500 **DIST LATERAL #5)** 7 Ammonia Low Miles 0104 1211 **Agriculture Municipal Point Sources** Chlorpyrifos Medium 7 Miles 0198 1211 Agriculture Diazinon Medium 7 Miles 0198 1211 **Agriculture** 7 **Unknown Toxicity** Medium Miles 0198 1211 Agriculture **HARLEY GULCH** 5 513.510 Medium 8 Miles 0101 1211 Mercury Resource extraction sources are abandoned mines. **Resource Extraction**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE START END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE 5 R HORSE CREEK 526.200 Cadmium Low 2 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Copper Low 2 Miles 0104 1211 Resource extraction sources are abandoned mines. Resource Extraction 2 Lead 0104 1211 Low Miles Resource extraction sources are abandoned mines. Resource Extraction Zinc 2 Low Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** 5 R **HUMBUG CREEK** 517.320 Copper Low 9 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Mercury 9 Miles 0104 1211 Low Resource extraction sources are abandoned mines. **Resource Extraction** Sedimentation/Siltation Low 9 Miles 0104 1211 **Resource Extraction** Zinc 9 0104 1211 Low Miles Resource extraction sources are abandoned mines. **Resource Extraction** 5 R **JAMES CREEK** 512.240 Mercurv Low 6 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Nickel Low 6 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** 5 R KANAKA CREEK 517.420 Arsenic Low 1 Miles 0104 1211 Resource extraction sources are abandoned mines. Resource Extraction 5 R KINGS RIVER (LOWER) 551.900 **Electrical Conductivity** Low 30 Miles 0104 1211 Agriculture Molybdenum Low 30 Miles 0104 1211 **Agriculture** 30 0104 1211 Toxaphene Low Miles **Agriculture**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

									12 May 00
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
5	R	LITTLE BACKBONE CREEK	506.200						
				Acid Mine Drainage Resource Extraction	Medium	1	Miles	0104	1211
				Cadmium	Medium	1	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction	BA a alicensa	4	Milaa	0404	4044
				Copper Resource extraction sources are abandoned mines.	Medium	1	Miles	0104	1211
				Resource Extraction					
				Zinc	Medium	1	Miles	0104	1211
				Resource extraction sources are abandoned mines. Resource Extraction					
5	R	LITTLE COW CREEK	507.330	Nessource Extraorion					
3	K	LITTLE COW CREEK	307.330	Cadmium	Low	1	Miles	0104	1211
				Resource extraction sources are abandoned mines.					
				Resource Extraction				0404	4044
				Copper Resource extraction sources are abandoned mines.	Low	1	Miles	0104	1211
				Resource Extraction					
				Zinc	Low	1	Miles	0104	1211
				Resource extraction sources are abandoned mines. Resource Extraction					
5	R	LITTLE GRIZZLY CREEK	518.540	Nessource Extraorion					
3	K	LITTLE GRIZZET GREEK	510.540	Copper	Medium	10	Miles	0101	1202
				Mine Tailings					
				Zinc	Medium	10	Miles	0101	1202
				Mine Tailings					
5	R	LONE TREE CREEK	531.400	Ammania	Law	15	Miles	0104	1211
				Ammonia Dairies	Low	15	willes	0104	1211
				Biological Oxygen Demand	Low	15	Miles	0104	1211
				Dairies					
				Electrical Conductivity Dairies	Low	15	Miles	0104	1211
	_	MARCH ORFEV	F40.000	Dailles					
5	R	MARSH CREEK	543.000	Mercury	Low	24	Miles	0104	1211
				Resource extraction sources are abandoned mines.		=7		0.04	.2.1
				Resource Extraction					
				Metals Resource extraction sources are abandoned mines.	Low	24	Miles	0104	1211
				Resource Extraction	•				

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE 5 R **MERCED RIVER, LOWER** 535.000 Chlorpyrifos High 60 Miles 0198 1205 **Agriculture** Diazinon Hiah 60 Miles 0198 1205 **Agriculture Group A Pesticides** Low 60 Miles 0104 1211 Agriculture 5 R MOKELUMNE RIVER, LOWER 531.200 Copper Low 28 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Zinc Low 28 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** 5 R **MORRISON CREEK** 519.120 Diazinon Medium 20 Miles 0198 1211 The agricultural source of diazinon for these waterbodies is from aerial deposition. **Agriculture Urban Runoff/Storm Sewers** 5 R MOSHER SLOUGH 544.000 2 Chlorpyrifos Medium Miles 0198 1211 **Urban Runoff/Storm Sewers** Diazinon Medium 2 Miles 0198 1211 The agricultural source of diazinon for these waterbodies is from aerial deposition. **Agriculture Urban Runoff/Storm Sewers** 5 R **MUD SLOUGH** 541.200 **Boron** Low 16 Miles 0101 1211 **Agriculture Electrical Conductivity** 16 Miles 0101 1211 Low **Agriculture Pesticides** Low 16 Miles 0101 1211 **Agriculture** Selenium 0592 1200 Hiah 16 Miles Agriculture **Unknown Toxicity** Low 16 Miles 0101 1211 **Agriculture** 5 R **NATOMAS EAST MAIN DRAIN** 519.220 Diazinon Medium 5 Miles 0198 1211

The agricultural source of diazinon for these waterbodies is from aerial deposition.

Agriculture

Urban Runoff/Storm Sewers

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

				· /						
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
				PCBs		Low	12	Miles	0104	1211
					Industrial Point Sources					
					Urban Runoff/Storm Sewers					
5	R	ORESTIMBA CREEK	541.100							
				Chlorpyrifos		Medium	10	Miles	0198	121
					Agriculture					
				Diazinon		Medium	10	Miles	0198	121
					Agriculture					
				Unknown Toxicity		Medium	3	Miles	0101	121
					Agriculture					
5	R	PANOCHE CREEK	542.400							
				Mercury		Low	25	Miles	0104	121
				Resource extraction s	ources are abandoned mines.					
				0	Resource Extraction		40	A411	0404	404
				Sedimentation/Siltation	Agriculture	Low	40	Miles	0104	121
					Agriculture-grazing					
					Road Construction					
				Selenium	rioud Conolidolion	Low	40	Miles	0104	121
					Agriculture					
					Agriculture-grazing					
					Road Construction					
5	R	PIT RIVER	506.000							
				Nutrients		Low	100	Miles	0104	121
					Agriculture					
					Agriculture-grazing					
				Org. enrichment/Low D.0	D.	Low	100	Miles	0104	121
					Agriculture					
					Agriculture-grazing					
				Temperature		Low	100	Miles	0104	121
					Agriculture					
					Agriculture-grazing					
5	R	SACRAMENTO RIVER (RED BLUFF	500.000							
		TO DELTA)		D			••		0.400	465
				Diazinon	Amriaultura	High	30	Miles	0198	120
				Mercury	Agriculture	∐iah	30	Miles	0198	120
					ources are abandoned mines.	High	30	willes	0190	120
					Resource Extraction					
				Unknown Toxicity		Medium	185	Miles	0101	121
				•	Source Unknown					
					Cource Olikilowii					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE 5 R **SACRAMENTO RIVER (SHASTA** 508.100 **DAM TO RED BLUFF)** High 40 Miles 0196 1201 Cadmium Resource extraction sources are abandoned mines. **Resource Extraction** Copper High 40 Miles 0196 1201 Resource extraction sources are abandoned mines. Resource Extraction **Unknown Toxicity** Medium 50 Miles 0101 1211 Source Unknown Zinc High 40 Miles 0196 1201 Resource extraction sources are abandoned mines. **Resource Extraction** 5 R **SACRAMENTO SLOUGH** 520.100 Diazinon Medium 1 Miles 0198 1211 **Agriculture Urban Runoff/Storm Sewers** Mercury Medium 1 Miles 0198 1211 Source Unknown **SALT SLOUGH** 5 541.200 15 Miles 0198 1211 Boron Low **Agriculture** Chlorpyrifos 15 Miles 0198 1211 Low **Agriculture** Diazinon 15 Miles 0198 1211 Low **Agriculture Electrical Conductivity** 15 0198 1211 Low Miles **Agriculture** Selenium High 15 Miles 0592 1298 Agriculture **Unknown Toxicity** Low 15 Miles 0198 1211 Agriculture 5 R **SAN CARLOS CREEK** 542.200 Mercury Low 1 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** SAN JOAQUIN RIVER 544.000 5 **Boron** High 130 Miles 0697 1299 Agriculture Chlorpyrifos 130 Miles 0198 1205 High **Agriculture** DDT Low 130 Miles 0104 1211 Agriculture

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY AFFECTED** UNIT DATE DATE Diazinon High 130 Miles 0198 1205 **Agriculture Electrical Conductivity** High 130 Miles 0697 1299 Agriculture **Group A Pesticides** Low 130 Miles 0104 1211 Agriculture Selenium High 50 Miles 0592 1200 **Agriculture Unknown Toxicity** Medium 130 Miles 0198 1211 Source Unknown 5 R **SPRING CREEK** 524.400 **Acid Mine Drainage** High 5 Miles 0198 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Cadmium 5 High Miles 0198 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Copper High 5 Miles 0198 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Zinc High 5 Miles 0198 1211 Resource extraction sources are abandoned mines. Resource Extraction 5 STANISLAUS RIVER (LOWER) 535.300 Diazinon High 48 Miles 0198 1205 **Agriculture Group A Pesticides** Low 48 Miles 0104 1211 **Agriculture Unknown Toxicity** 48 0101 1211 Medium Miles Source Unknown 5 R STOCKTON DEEP WATER 544.000 **CHANNEL** Dioxin 2 Medium Miles This listing was made by USEPA. **Point Source** 2 **Furans** Medium Miles This listing was made by USEPA. **Point Source PCBs** Medium 2 Miles This listing was made by USEPA. **Point Source** 5 STRONG RANCH SLOUGH 519.210 Chlorpyrifos Medium 5 Miles 0198 1211 **Urban Runoff/Storm Sewers**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE Diazinon Medium 5 Miles 0198 1211 The agricultural source of diazinon for these waterbodies is from aerial deposition. **A**ariculture **Urban Runoff/Storm Sewers SULFUR CREEK** 5 R 513.510 Mercury High 7 Miles 0198 1205 Resource extraction sources are abandoned mines. **Resource Extraction TEMPLE CREEK** 5 R 531.400 Ammonia Low 10 Miles 0104 1211 **Dairies Electrical Conductivity** Low 10 Miles 0104 1211 **Dairies** 5 526.200 **TOWN CREEK** Cadmium Low 1 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** 0104 Copper Low 1 Miles 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Lead Low 1 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Zinc 1 0104 1211 Low Miles Resource extraction sources are abandoned mines. **Resource Extraction** 5 **TUOLUMNE RIVER (LOWER)** 535.500 Diazinon High 32 Miles 0198 1205 Agriculture **Group A Pesticides** Low 32 Miles 0104 1211 **Agriculture Unknown Toxicity** Medium 32 Miles 0101 1211 Source Unknown 5 **WEST SQUAW CREEK** 505.100 Cadmium Medium 2 Miles 0104 1211 Resource extraction sources are abandoned mines. Resource Extraction Copper Medium 2 Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction** Lead Medium Miles 0104 1211 Resource extraction sources are abandoned mines. **Resource Extraction**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE Zinc Medium 2 Miles 0104 1211 Resource extraction sources are abandoned mines. Resource Extraction 5 R WILLOW CREEK (WHISKEYTOWN) 524.630 Acid Mine Drainage Low 3 Miles 0104 1211 Resource extraction sources are abandoned mines. Resource Extraction Copper 3 Miles 0104 1211 Low Resource extraction sources are abandoned mines. **Resource Extraction** Zinc 3 0104 1211 Low Miles Resource extraction sources are abandoned mines. **Resource Extraction** 5 w **GRASSLANDS MARSHES** 541.200 **Electrical Conductivity** Medium 8224 0101 1211 Acres Agriculture Selenium High 8224 Acres 0592 1298 Agriculture 6 **BRIDGEPORT RES** 630.300 **Nutrients** High 3000 Acres Livestock grazing in wetlands upgradient of reservoir. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Agriculture Sedimentation/Siltation Hiah 3000 Acres Watershed disturbance including livestock grazing. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development processs, resources permitting. Source Unknown **CROWLEY LAKE** 603.100 5280 Arsenic High Acres To be addressed as part of Watershed Management Initiative (WMI) for upper watershed, beginning with Years 3-5 of WMI program, if resources permit. **Natural Sources Nutrients** High 5280 Acres Source Unknown 6 **DONNER LAKE** 635.200 **Priority Organics** Low 960 Acres PCBs in fish and sediment exceed Maximum Tissue Residue Level criteria; unknown nonpoint sources. Phase I Truckee River sediment TMDL projected for completion in 1999. Additional monitoring/study necessary to determine sources/cleanup potential for priority organics. TMDLs for organics to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Source Unknown

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
6	L	EAGLE LAKE (2)	637.300	addressed through sewering TMDLs to be addressed do permitting. Lai No Rai	disposal to land, livestock on ng of septic system develop uring years 6-13 of the next nd Development npoint Source nge Land	ment and RWQCB's	25000 ned disturbance. ongoing nonpoin	t source pro	eing ogram.	
6	L	GRANT LAKE	601.000	Arsenic Targeted for "easy" (alread	ptage Disposal dy funded) TMDL document tural Sources	High ation that arsenic fron	1095 n natural source.	Acres s.	0198	0199
6	L	HAIWEE RES	603.300	biological monitoring being TMDL development proces Ha l	o algicide use to prevent tas g required. TMDLs to be add ss, resources permitting. bitat Modification npoint Source					
6	L	HORSESHOE LAKE (2)	628.000	years of the TMDL develop	rmit delisting. TMDLs, if ne oment process, resources p nstruction/Land Developn	ermitting.	1 I during years 6-	Acres 13 of the ne	ext 13	
6	L	INDIAN CREEK RES	632.200	unreliability of treatment pr fresh water.	d tertiary-treated domestic v rocess led to eutrophication astewater					0199

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-Mav-99 **HYDRO** SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE LAKE TAHOE 634.000 Nutrients High 120000 Acres Watershed disturbance, urban stormwater, atmospheric deposition, Lake is targeted for sediment and nutrient TMDLs but ability to complete them depends on availability of reliable watershed model. Model calibration, and additional watershed assessment, were funded as a result of 1997 presidential forum; TMDLs for entire watershed to be coordinated with Tahoe Regional Planning Agency's 2001 evaluation of attainment of environmental threshold standards. **Atmospheric Deposition** Construction/Land Development **Drainage/Filling Of Wetlands Highway Maintenance And Runoff** Hydromodification Marinas Nonpoint Source Other Urban Runoff Silviculture **Urban Runoff/Storm Sewers** Wastewater Sedimentation/Siltation Hiah 120000 Acres Watershed disturbance including logging, construction, urban and highway runoff. Development of TMDLs depends on availability of reliable watershed model. Funding for final calibration of U.C. Davis Tahoe Research group model, and for additional watershed assessment, was provided as a result of 1997 presidential forum. TMDLs to be coordinated with Tahoe Regional Planning Agency's 2001 evaluation of attainment of environmental threshold standards. Source Unknown **PLEASANT VALLEY RES** 603.200 Org. enrichment/Low D.O. High 115 Problems related to watershed disturbance/reservoir management to be addressed together with problems in Crowley Lake as part of the Watershed Management Initiative; TMDLs to be addressed during years 3-5 of the next 13 years of the TMDL development process, if resources permit. Flow Regulation/Modification **Nonpoint Source** STAMPEDE RES 636.000 **Pesticides** Low 3444 Acres Sources unknown; no significant agriculture or residential development in watershed; feasibility of reducing loading probably low. Recalculation of Maximum Tissue Residue Level criteria makes delisting possible in next cycle. TMDLs, if needed, will be addressed during years 6-13 of the next 13 years of the TMDL development process. Source Unknown 6 **TINEMAHA RES** 603.200 180 Acres Arsenic TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permittina. **Natural Sources Nonpoint Source Upstream Impoundment**

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE Metals Low 180 Acres Watershed disturbance, upstream geothermal sources of arsenic. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Source Unknown 6 **TOPAZ LAKE** 631.100 2300 Sedimentation/Siltation High Acres Agriculture, river channel damage during January 1997 flood. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Agriculture **Nonpoint Source** 6 **TWIN LAKES** 603.100 Nutrients Low Acres Watershed disturbance, urban runoff; to be addressed during years 6-13 of the next 13 years of the TMDL development process, if resources permit. Land Development **Nonpoint Source** Other Urban Runoff **AMARGOSA RIVER** 609.000 6 R Salinity/TDS/Chlorides Medium 198 Miles 0198 0199 Internally drained river with natural high salinity; targeted for "easy" (already funded) TMDL using 1998 Section 104/106 grant funds **Natural Sources** 6 R **ASPEN CREEK** 632,100 Metals High Miles 0198 0199 Acid drainage from Leviathan Mine; Lahontan RWQCB mine workplan to be documented as Phase I TMDL using 1998 Section 104/106 grant funds. **Acid Mine Drainage Natural Sources Nonpoint Source** 630.300 **AURORA CANYON CREEK Habitat alterations** Low Miles Livestock grazing. Listed on basis of limited data; further monitoring may permit delisting. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Range Land 6 **BEAR CREEK (R6)** 635.200 Sedimentation/Siltation Miles 1195 0199 High Creek affected by hydrologic modification for ski resort/snow making pond-affected by sediment from pond dam break. Phase I sediment TMDL for Truckee River and tributaries projected to be completed for Basin Plan amendments in 1999, using 1998 Section 104/106 grant funds; Phase II work has received Section 205(j) funding and will begin in 1998. Hydromodification **Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE R **BLACKWOOD CREEK** 634.200 Sedimentation/Siltation High Miles 0198 0199 Creek affected by past gravel quarry operations and other watershed disturbance. Existing USFS restoration program to be documented as phase I "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. **Construction/Land Development** Hydromodification **Nonpoint Source Resource Extraction** Silviculture R **BODIE CREEK** 630,200 Metals High Miles Affected by drainage from inactive mines, mine tailings in creek. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Mine Tailings **Nonpoint Source** Resource Extraction 635.200 6 R **BRONCO CREEK** Sedimentation/Siltation Miles 1195 0199 High Watershed disturbance in naturally highly erosive watershed; targeted for sediment TMDL as part of larger Truckee River watershed effort. Phase I TMDL to be completed in 1999 using 1998 Section 104/106 grant funds; Phase II, using Section 205j funds, to begin in 1998. **Natural Sources Nonpoint Source BRYANT CREEK** 632,100 6 R Metals High 10 Miles 0198 0199 Affected by acid mine drainage from Leviathan Mine. Problem being addressed by RWQCB through Leviathan Mine workplan; workplan will be documented as Phase I "easy" (already funded) TMDL in 1998 using Section 104/106 grant funds. **Acid Mine Drainage Nonpoint Source** 632.100 6 R **CARSON RIVER, E FK Nutrients** Miles Probably livestock grazing. River was listed due to data collected by State of NV near state line in 1980s, probably reflecting drought conditions. NV has since delisted the river for these pollutants. Further monitoring may support delisting in CA. TMDLs, if needed, to be addressed during years 3-5 of the next 13 years of the TMDL development process, resources permitting. **Nonpoint Source** Range Land 6 R **CLARK CANYON CREEK** 630.300 **Habitat alterations** Medium Miles Livestock grazing. Listed on basis of very limited information. CRMP has been implemented since 1980s; further monitoring may support delisting. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Range Land

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE R **CLEARWATER CREEK** 630.400 Sedimentation/Siltation Medium Miles Livestock grazing. Listed on basis of limited data: additional monitoring may support delisting. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Range Land **COTTONWOOD CREEK (1)** 603.300 Water/Flow Variability High Miles Lower reach of creek affected by diversions for LADWP system; TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Flow Regulation/Modification **EAST WALKER RIVER** 630.000 Metals Medium Miles Inactive mines and other watershed disturbance: highway runoff. Listed initially due to elevated fish tissue levels: needs further monitoring for metals impacts and may be considered for delisting for metals in next cycle. TMDLs, if needed, will be addressed during years 6-13 of the next 13 years of the TMDL development process. **Natural Sources** Nonpoint Source Other Urban Runoff Range Land **Resource Extraction** Sedimentation/Siltation High River affected by turbid releases from Bridgeport Reservoir; major sediment discharge resulted litigation by State Department of Fish and Game. Further monitoring of beneficial use recovery may support delisting. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Hydromodification **GOODALE CREEK** 603.300 Sedimentation/Siltation Low Miles Potential for delisting following further monitoring. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Range Land **GRAY CREEK (R6)** 635.000 Sedimentation/Siltation 1195 0199 High Disturbance of naturally highly erosive watershed; Phase I of the TMDL in progress, to be completed as Basin Plan amendment using 1998 Section 104/106 grant funds. Section 205(j) funding has been obtained for monitoring to begin in 1998 for use in Phase II of the TMDL. **Natural Sources Nonpoint Source** R **GREEN CREEK** 630.400 Miles **Habitat alterations** Medium Creek affected by hydroelectric dam construction, livestock grazing. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process. Hydromodification Range Land

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE 6 R **GREEN VALLEY LAKE CREEK** 628.200 **Priority Organics** Low Miles Priority organics (source unknown) were detected in stream in 1980's: no monitoring since. Stream needs reevaluation to determine need for listing. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Source Unknown **HEAVENLY VALLEY CREEK** 634.100 Sedimentation/Siltation 0198 High Miles 0199 Creek affected by ski resort construction and maintenance activities. Recently adopted resort master plan will phase future development based on accomplishment of watershed restoration projects. Master Plan currently scheduled to be documented as Phase I "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. (Needs further discussion with USFS staff; recent monitoring data indicate possible need for additional sediment modeling.) **Construction/Land Development Habitat Modification** Hydromodification **Land Development Nonpoint Source Recreational Activities** 6 R HOT CREEK (1) 631.400 Metals 5 Miles 0198 0199 Medium Natural geothermal drainage; targeted for "easy" (already funded) TMDL using 1998 Section 104/106 grant funds **Natural Sources** 6 HOT CREEK (2) 603.100 Metals High 10 Miles 0198 0199 Natural geothermal springs. Targeted for "easy" (already funded) TMDL using Section 104/106 grant funds. **Natural Sources** 6 R **HOT SPRINGS CANYON CREEK** 630.300 Sedimentation/Siltation Miles Medium Listed on basis of limited data; further monitoring may support delisting. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process. Range Land 6 R **INDIAN CREEK (1)** 632.200 Hiah 7 Miles **Habitat alterations** Watershed disturbance from livestock grazing. TMDLs to be addressed as part of Carson River WMI implementation. **Pasture Land** 6 R LASSEN CREEK 637.000 Miles Flow alterations Medium Agricultural diversions. TMDL to be addressed during years 6-13 of the next 13 years of the TMDL development process, as resources permit. Flow Regulation/Modification

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** AFFECTED UNIT DATE DATE 6 R LEE VINING CREEK 601.000 Flow alterations High 11 Miles Affected by diversions by Los Angeles Dept. of Water and Power. Court ordered restoration project is underway: will probably be documented as Phase I "easy" (already funded) TMDL during years 3-5 of the 13 years of TMDL implementation, resources permitting. Flow Regulation/Modification 6 LEVIATHAN CREEK 632,100 Metals 2 0198 High Miles 0199 Lower reach of creek affected by acid drainage from Leviathan Mine; reach has been diverted around tailings as part of ongoing pollution abatement project. Lahontan RWQCB workplan to be documented as Phase I "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. **Acid Mine Drainage** LITTLE HOT CREEK 6 R 603.100 **Arsenic** Medium Miles 0198 1299 Natural (geothermal?) sources: targeted for "easy" (already funded) TMDL using 1998 Section 104-106 grant **Natural Sources** MAMMOTH CREEK 6 R 603.100 Miles Metals High Mammoth Creek is the headwaters of Hot Creek (2): However, it is affected by urban runoff from the Town of Mammoth Lakes as well as natural sources of metals. Urban runoff problems at Mammoth are being addressed through the RWQCB's ongoing regulation and enforcement problems and the WMI. **Natural Sources Nonpoint Source** MILL CREEK (1) 601.000 6 Flow alterations High Creek affected by water diversions. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting **Water Diversions** 6 R MILL CREEK (3) 641.300 Sedimentation/Siltation Medium Livestock grazing. TMDL to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Range Land **MOJAVE RIVER** 628.200 6 R **Priority Organics** River was 303(d) listed in 1980's due to subsurface "Barstow slug" of toxic pollutants from various urban/industrial sources; later monitoring shows main "slug" has dissipated but some areas of pollution remain. River is currently a WMI priority watershed with emphasis on revision of TDS/salinity objectives. TMDLs for "mini-slug" pollutants to be addressed, if necessary, during years 6-13 of the next 13 years of the TMDL development process, resources permitting. **Hazardous Waste Land Disposal**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE R MONITOR CREEK 632.100 Metals High Miles Drainage from inactive mines: other watershed disturbance. Problems to be addressed as part of Carson River WMI effort during years 3-5 of the next 13 years of TMDL development. **Natural Sources Nonpoint Source Resource Extraction OWENS RIVER** 603.300 6 R **Arsenic** High 120 Miles Arsenic from natural geothermal sources; amounts affected by reservoir management. TMDLs for Long HA (603.10) to be addressed during years 3-5 of the next 13 years of the TMDL development process, as part of WMI, if resources permit. TMDLs for Upper and Middle Owens HAs (603.20 and 603.30) to be addressed during years 6-13 if resources permit. **Natural Sources Habitat alterations** 120 Miles High TMDLs for Long HA (630.10) to be addressed in years 3-5 of the next 13 years of the TMDL development process as part of the WMI, resources permitting. TMDLs for Upper and Middle Owens HA's to be addressed during years 6-13 of the next 13 years of TMDL development, resources permitting. Flow Regulation/Modification 6 R PINE CREEK (2) 637.300 Sedimentation/Siltation High 24 Miles 0198 0199 Livestock grazing; other watershed disturbance. Watershed/fisheries restoration by existing CRMP group to be documented as "easy" (already funded) TMDL, or as basis for delisting, using 1998 Section 104/106 grant funds. **Nonpoint Source** Range Land **ROUGH CREEK** 630.000 Miles **Habitat alterations** Medium 8 Livestock grazing impacts. Additional monitoring may provide grounds for delisting. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Range Land SKEDADDLE CREEK 637.100 Miles **High Coliform Count** Low Livestock grazing on BLM land led to reports of high coliform levels several years ago; current status unknown. Further monitoring may support delisting. TMDLs, if needed, will be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. Range Land **SNOW CREEK** 634.200 6 R Habitat alterations High Miles **Drainage/Filling Of Wetlands Land Development Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

			HYDRO				SIZE		START	END
REGION			UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
6	R	SQUAW CREEK	635.200	Dra Hig Hyd Nat No Ott	as channelized. Lower cre red from January 1997 floo	eek has very high bedloa poding. Phase I sediment 1998 using Section 205(j) ppment nds	ad sediment trans t TMDL to be com	sport. Severe	e	0199
6	R	SUSAN RIVER	637.200	Unknown Toxicity River affected by natural as addressed during years 6- Agg Hig Nat	and man-made geotherma	of the TMDL developmen				
6	R	TRUCKEE RIVER	635.200	Sedimentation/Siltation Watershed disturbance ind and management; highly e 104/106 grant funds; Phas So	erosive subwatersheds. P	Phase I sediment TMDL t	to be completed u			0199
6	R	TUTTLE CREEK	603.300	Habitat alterations Livestock grazing problems addressed during years 6-						
6	R	WARD CREEK	634.200		•	•	7 Fahoe during year	Miles ers 6-13 of the	ne next	

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

D=C:C:	T)/5	11416F	HYDRO	DOLLUTANTICE TO SECOND	0011707	25.02	SIZE		START	END
REGION		NAME WEST WALKED BIVED	UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	AFFECTED	UNIT	DATE	DATE
6	R	WEST WALKER RIVER	631.000	highway washed out and a TMDLs to be addressed the 13 of the next 13 years of	hrough WMI process (once the TMDL development p	gency regulations with r e priority watersheds are	no CEQA analysis e rotated), probal	s.)		
				•	griculture onpoint Source					
6	R	WOLF CREEK (1)	632.100	Sedimentation/Siltation Livestock grazing. Proble years of the TMDL develo Ra			14 effort during yea.	Miles rs 3-5 of the	next 13	
6	S	ALKALI LAKE, LOWER	641.000	documented as "easy" (al. Flo Na	lake; affected by agricultu lready funded) TMDL using ow Regulation/Modificati atural Sources onpoint Source	g 1998 Section 104/106		Acres apairment to	0198 be	0199
6	S	ALKALI LAKE, MIDDLE	641.000	documented as [*] "easy" (al. Flo Na	lake affected by agricultur lready funded) TMDL using ow Regulation/Modificati atural Sources onpoint Source	g 1998 Section 104/106		Acres pairment to	0198 be	0199
6	S	ALKALI LAKE, UPPER	641.000	Na		g 1998 Section 104/106		Acres pairment to	0198 be	0199
6	S	DEEP SPRINGS LAKE	605.000	1998 Section 104/106 gra	lake; "natural impairment" ant funds. onpoint Source	Medium ' to be documented as "é	1400 easy" (already fui	Acres nded) TMDL	0198 Lusing	0199

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT UNIT AFFECTED DATE DATE S **HONEY LAKE** 637.200 Arsenic Medium 55327 Acres Arsenic is from ultimately from natural sources, but amounts are affected by agricultural/geothermal drainage. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, probably in connection with TMDLs for Susan River system. Flow Regulation/Modification **Natural Sources Nonpoint Source** Salinity/TDS/Chlorides Medium 55327 Acres Natural internally directed lake affected by agricultural and geothermal drainage. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, as resources permit (probably in connection with TMDLs for the Susan River.) **Agriculture Natural Sources Nonpoint Source** 6 S HONEY LAKE WILDFOWL MGMT. 637.200 **PONDS** Flow alterations Medium Ponds were affected by 1980s drought. Further monitoring may support delisting for this parameter. TMDLs, if needed, to be addressed during years 6-13 of the next 13 years of the TMDL development process. **Agricultural Water Diversion** Metals 500 Medium Acres Ponds were affected by 1980s drought; further monitoring may support delisting for this parameter. TMDLs, if needed, to be addressed during years 6-10 of the next 13 years of the TMDL development process, as resources permit. Agriculture **Geothermal Development Natural Sources** Salinity/TDS/Chlorides Medium 500 Acres Ponds affected by agricultural, geothermal drainage. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, resources permitting. **A**ariculture **Geothermal Development** Natural Sources **Trace Elements** Medium 500 Geothermal and agricultural drainage. Further monitoring might support delisting. TMDLs, if needed, to be addressedduring years 6-13 of the next 13 years of the TMDL development process, resources permitting. **Geothermal Development Natural Sources** 6 S LITTLE ALKALI LAKE 603.100 0198 0199 Arsenic Medium Acres Naturally impaired (by geologic/geothermal sources); natural impairment to be documented as "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. **Natural Sources**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **PRIORITY** UNIT AFFECTED DATE DATE S MONO LAKE 601.000 Salinity/TDS/Chlorides High 35000 Acres 0198 0199 Naturally saline, internally drained lake with increased TDS due to diversions of tributaries by Los Angeles Dept. of Water and Power. Natural high levels of toxic elements to be addressed through "easy" (already funded) TMDL using Section 104/106 grant funds. Flow Regulation/Modification **Natural Sources** Source Unknown 6 S **OWENS LAKE** 603.300 Salinity/TDS/Chlorides Low 20000 Acres Natural internally drained saline lake with lake level decreased, salinity increased due to diversions of tributaries by Los Angeles Department of Water and Power. Pending project by Great Basin Unified Air Pollution Control District may restore some beneficial uses to part of lakebed. TMDLs to be addressed during years 6-13 of the next 13 years of the TMDL development process, as resources permit. I20,000 acre area figure reflects past Corps of Engineers delineation of brine pool; natural lake bed is much larger.] Flow Regulation/Modification **Natural Sources** S **SEARLES LAKE** 621.000 26100 Salinity/TDS/Chlorides Medium Acres 0198 0199 Naturally saline, internally drained desert playa lake. Natural impairment to be documented as "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. Source Unknown 6 **AMEDEE HOT SPRINGS** 637.200 0199 Metals Medium Acres 0198 Natural geothermal springs developed for energy production; natural impairment to be documented as "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. **Natural Sources** w **BIG SPRINGS** 603.100 Arsenic Medium 1 Acres 0198 0199 Natural geothermal source of arsenic at headwaters of Owens River. Natural impairment to be documented as "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. **Natural Sources** CINDER CONE SPRINGS 635.000 **Nutrients** Medium Acres Springs tributary to Truckee River, affected by subsurface drainage from former wastewater disposal area (disposal discontinued 1978). Source Unknown Salinity/TDS/Chlorides Medium Subsurface drainage from former wastewater disposal area. Has not been monitored routinely in recent years; further monitoring may support delisting. TMDLs, if needed, to be addressed during years 3-5 of the next 13 years of the TMDL development process, as resources permit. Wastewater

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY UNIT AFFECTED DATE DATE 6 **FALES HOT SPRINGS** 631.000 Metals Medium Acres 0198 0199 Natural geothermal springs: natural impairment to be documented as "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. **Natural Sources HONEY LAKE AREA WETLANDS** 637.200 Metals Medium 12000 Geothermal drainage; effects of saline Honey Lake water. To be addressed during years 6-13 of the next 13 years of the TMDL development process, probably as part of TMDLs for Honey Lake and Susan River. **Agriculture Geothermal Development Natural Sources** Nonpoint Source W **KEOUGH HOT SPRINGS** 603.000 0198 Metals Medium Acres 0199 Natural geothermal springs developed for recreation. Natural impairment to be documented as "easy" (already funding) TMDL using 1998 Section 104/106 grant funds. **Natural Sources TOP SPRING** 637.200 Radiation Medium Acres 0198 0199 Natural source (spring was developed as domestic water source for USFS ranger station and abandoned after testing showed MCL exceedance.) Natural impairment to be documented as "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. **Natural Sources** 637.200 6 w **WENDEL HOT SPRINGS** Metals Medium 0198 0199 Acres Natural geothermal spring developed for energy. Metals source to be documented as natural for "easy" (already funded) TMDL using 1998 Section 104/106 grant funds. **Natural Sources** 723.100 7 R **ALAMO RIVER Pesticides** High 52 Miles 2002 2011 Pesticides may be contained in agricultural return flows. Elevated fish tissue levels. Toxic bioassay results. **Agricultural Return Flows** Sedimentation/Siltation High 52 Miles 1998 2000 Agricultural Return Flows Selenium 52 Miles 2000 2010 Selenium originates from Upper Basin Portion of Colorado River. Elevated fish tissue levels. **Agricultural Return Flows** 7 R **COACHELLA VALLEY STORM** 719.470 CHANNEL Bacteria Low 20 Miles 2004 2009 Bacteria objectives violated, threat of toxic bioassay results. Source Unknown

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **END START PRIORITY** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE **AFFECTED** UNIT DATE DATE 7 R **IMPERIAL VALLEY DRAINS** 723.100 **Pesticides** High 1305 Miles 2005 2011 Elevated fish tissue levels and toxic bioassay results. **Agricultural Return Flows** Sedimentation/Siltation High 1305 Miles 2000 2010 Agricultural return flows. **Agricultural Return Flows** Selenium High 1305 2000 2010 Miles Selenium originates from Upper Basin Portion of Colorado River. Elevated fish tissue levels. **Agricultural Return Flows** 7 R 723.100 **NEW RIVER (R7)** Bacteria High 60 Miles 1998 2005 Regional Board proposes to establish TMDL in cooperation with U.S.EPA/Mexico. **Agricultural Return Flows Nutrients** High 60 Miles 2002 2010 Regional Board proposes to establish TMDL in cooperation with U.S.EPA/Mexico. **Agricultural Return Flows Pesticides** High 60 Miles 2002 2013 **Agricultural Return Flows** Sedimentation/Siltation Hiah 60 Miles 1998 2002 Agricultural Drainage from Imperial Valley and Mexicalli Valley. **Agricultural Return Flows Volatile Organics/VOCs** High 60 Miles 2007 2013 **Agricultural Return Flows** 7 R PALO VERDE OUTFALL DRAIN 715.400 **Bacteria** Medium 16 Miles 2005 2011 Source Unknown 7 S **SALTON SEA** 728.000 **Nutrients** 220000 2002 2010 Medium Acres Agricultural Return Flows Salinity Medium 220000 Acres 1998 2001 Agricultural Return Flows Selenium Medium 220000 Acres 2000 2007 Selenium originates from Upper Basin Portion of Colorado River. **Agricultural Return Flows** 8 В **ANAHEIM BAY** 801.110 Metals Medium 180 0108 0111 Acres **Unknown Nonpoint Source Urban Runoff/Storm Sewers Pesticides** Medium 180 0108 0111 Acres **Unknown Nonpoint Source**

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

				74pp						12 May 00
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
8	В	HUNTINGTON HARBOUR	801.110							
				Metals	Backwards	Medium	150	Acres	0108	0111
					Boatyards Urban Runoff/Storm Sewers					
				Pathogens	Olban Kunon/Storm Sewers	Medium	150	Acres	0108	0111
				. 401090110	Urban Runoff/Storm Sewers	vaiuiii		, 10.00	0.00	V
				Pesticides		Medium	150	Acres	0108	0111
					Unknown Nonpoint Source					
8	В	NEWPORT BAY, LOWER	801.110							
				Metals		High	700	Acres	0196	0107
					Boatyards					
					Contaminated Sediments Urban Runoff/Storm Sewers					
				Nutrients	Cizzii Kuiloii/Ciolili Gewels	High	700	Acres	0196	0198
					Agriculture	a··				
					Urban Runoff/Storm Sewers					
				Pathogens		High	700	Acres	0697	0100
				Pesticides	Urban Runoff/Storm Sewers	∐i ah	700	Acres	0199	0102
				resticities	Agriculture	High	700	Acres	บเฮฮ	0102
					Contaminated Sediments					
				Priority Organics		High	700	Acres	0199	0102
					Contaminated Sediments					
					Unknown Nonpoint Source					
8	E	UPPER NEWPORT BAY ECOLOGICAL RESERVE	801.110							
				Metals		High	752	Acres	0199	0102
					Urban Runoff/Storm Sewers				0.400	
				Nutrients	Agriculture	High	752	Acres	0196	0198
					Groundwater Loadings					
					Urban Runoff/Storm Sewers					
				Pathogens		High	752	Acres	0697	0100
					Urban Runoff/Storm Sewers					
				Pesticides	A suri sultanas	High	752	Acres	0199	0102
					Agriculture Unknown Nonpoint Source					
				Sedimentation/Siltation	Olikilowii Nolipoliit Source	High	752	Acres	0196	0198
					Agriculture	ingii	. 02	AUIGO	0.00	0100
					Channel Erosion					
					Construction/Land Development					
					Erosion/Siltation					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
8	L	BIG BEAR LAKE	801.710							
				Copper	5	Medium	2970	Acres	0102	0105
				Mercury	Resource Extraction	Medium	2970	Acres	0102	0105
					Resource Extraction				0.02	
				Metals	Resource Extraction	Medium	2970	Acres	0102	0105
				Noxious aquatic plants	Resource Extraction	Medium	2970	Acres	0102	0105
					Construction/Land Development					
				Nutrients	Unknown point source	Medium	2970	Acres	0102	0105
				Nutrionts	Construction/Land Development	moulum	2010	Adics	0102	0100
				0 11 4 41 10114 41	Snow Skiing Activities				0.400	2425
				Sedimentation/Siltation	Construction/Land Development	Medium	2970	Acres	0102	0105
					Snow Skiing Activities					
					Unknown Nonpoint Source					
8	L	CANYON LAKE (RAILROAD CANYON RESERVOIR)	802.120							
		OANT ON RECEIVORY		Nutrients		Medium	600	Acres	0102	0104
					Nonpoint Source			_		
				Pathogens	Nonpoint Source	Medium	600	Acres	0102	0104
8	L	ELSINORE, LAKE	802.310		<u>.</u>					
		,		Nutrients		Medium	3300	Acres	0102	0104
				Ora anriahment/Low D.C	Unknown Nonpoint Source	Medium	3300	Aoroo	0102	0104
				Org. enrichment/Low D.C	Unknown Nonpoint Source	Wedium	3300	Acres	0102	0104
				Sedimentation/Siltation		Medium	3300	Acres	0102	0104
				Unknown Toxicity	Urban Runoff/Storm Sewers	Medium	3300	Acres	0102	0104
					Unknown Nonpoint Source				V.V-	• • • • • • • • • • • • • • • • • • • •
8	L	FULMOR, LAKE	802.210							
				Pathogens	Unknown Nonnoint Course	Low	9	Acres	0108	0111
•			904 949		Unknown Nonpoint Source					
8	L	PRADO PARK LAKE	801.210	Nutrients		Low	60	Acres	0108	0111
					Nonpoint Source					
				Pathogens	Nonpoint Source	Low	60	Acres	0108	0111
					Homponit Cource					

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE Approved by USEPA: 12-May-99 **HYDRO** SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE **CHINO CREEK, REACH 1** 8 R 801.210 **Nutrients** Medium 2 Miles 0100 0105 **Agriculture Dairies** Medium 2 Miles 0100 0105 **Pathogens Dairies Urban Runoff/Storm Sewers** 8 R **CHINO CREEK, REACH 2** 801.210 **High Coliform Count** Low 10 Miles 0108 0111 **Unknown Nonpoint Source** R **CUCAMONGA CREEK, VALLEY** 801.210 8 **REACH High Coliform Count** Low 13 Miles 0108 0111 **Unknown Nonpoint Source** R **GROUT CREEK** 801.720 8 Metals 2 Medium Miles 0102 0105 **Unknown Nonpoint Source** 2 Nutrients Medium Miles 0102 0105 **Unknown Nonpoint Source** 8 R KNICKERBOCKER CREEK 801.710 Metals Medium 2 Miles 0103 0105 **Unknown Nonpoint Source** 2 **Pathogens** Medium Miles 0103 0105 **Unknown Nonpoint Source** 8 LYTLE CREEK 801.400 **Pathogens** Low 18 Miles 0108 0111 **Unknown Nonpoint Source** 8 R MILL CREEK (PRADO AREA) 801.250 Medium 4 Miles 0100 0105 Nutrients Agriculture **Dairies Pathogens** Medium Miles 0100 0105 **Dairies** Suspended solids Medium 4 Miles 0100 0105 **Dairies** 8 **MILL CREEK, REACH 1** 801.580 **Pathogens** Low 5 Miles 0108 0111 **Unknown Nonpoint Source**

801.580

Pathogens

MILL CREEK, REACH 2

8

R

Appendix -120

Unknown Nonpoint Source

Low

8

Miles

0108

0111

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

	1000 07(2)1 01((1) 1000(a) 2)01 7((1) 1 (1						пррготоа	by OOL! A.	12-Way-55	
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
8	R	MOUNTAIN HOME CREEK	801.580							
				Pathogens	Unknown Nonpoint Source	Low	4	Miles	0108	0111
8	R	MOUNTAIN HOME CREEK, EAST	801.700		Change in Course					
Ū		FORK	0011100							
				Pathogens	Unknown Nonpoint Source	Low	1	Miles	0108	0111
8	R	RATHBONE (RATHBUN) CREEK	801.720		ommount trompoint doubto					
-		,		Nutrients		Medium	2	Miles	0102	0105
					Snow Skiing Activities Unknown Nonpoint Source					
				Sedimentation/Siltation	Olikilowii Nolipoliit Source	Medium	2	Miles	0102	0105
					Snow Skiing Activities					
_	_				Unknown Nonpoint Source					
8	R	SAN DIEGO CREEK, REACH 1	801.110	Metals		High	6	Miles	0199	0102
					Unknown Nonpoint Source					
				Nutrients	Agriculture	High	6	Miles	0196	0198
					Groundwater Loadings					
				Daniel dan	Urban Runoff/Storm Sewers	111	•	BALL -	0400	0400
				Pesticides	Unknown Nonpoint Source	High	6	Miles	0199	0102
				Sedimentation/Siltation		High	6	Miles	0196	0198
					Agriculture Channel Erosion					
					Construction/Land Development					
					Erosion/Siltation					
8	R	SAN DIEGO CREEK, REACH 2	801.110	Metals		Lliah	6	Miles	0199	0102
				Metals	Urban Runoff/Storm Sewers	High	0	willes	0199	0102
				Nutrients	Amelocations	High	6	Miles	0196	0198
					Agriculture Groundwater Loadings					
					Urban Runoff/Storm Sewers					
				Sedimentation/Siltation	Agriculture	High	6	Miles	0196	0198
					Channel Erosion					
					Construction/Land Development					
				Unknown Toxicity	Erosion/Siltation	High	6	Miles	0199	0102
				-	Unknown Nonpoint Source	J	-			-

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START END** REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE 8 R **SANTA ANA RIVER, REACH 3** 801.200 **Nutrients** Medium 3 Miles 0100 0111 **Dairies Pathogens** Medium Miles 0100 0111 **Dairies** Salinity/TDS/Chlorides Medium 3 Miles 0100 0111 **Dairies** 8 801.270 **SANTA ANA RIVER, REACH 4 Pathogens** 12 Miles 0108 0111 Low **Nonpoint Source** 8 R **SANTIAGO CREEK, REACH 4** 801.120 Salinity/TDS/Chlorides Low 2 Miles 0108 0111 Source Unknown SILVERADO CREEK 801.120 8 R **Pathogens** Low 2 Miles 0108 0111 **Unknown Nonpoint Source** 2 Salinity/TDS/Chlorides Low Miles 0108 0111 **Unknown Nonpoint Source** 801.710 8 R **SUMMIT CREEK Nutrients** Medium 2 Miles 0102 0105 **Construction/Land Development MISSION BAY** 906.400 9 В Medium 1 Acres Eutrophic 0705 0708 Nonpoint/Point Source **High Coliform Count** 1540 0799 0709 Low Acres Nonpoint/Point Source Lead Medium 1 Acres 0705 0708 Nonpoint/Point Source 900.00 9 В **SAN DIEGO BAY** Benthic Comm. Effects High 172 Acres 0198 0703 The listing covers the following areas: Near Sub Base 16 acres, Near Grape Street 7 acres, Downtown Piers 10 acres, Near Coronado Bridge 30 acres, Near Chollas Creek 14 acres, San Diego Naval Station 76 acres, Seventh Street Channel 9 acres, North of 24th Street Marine Terminal 10 acres. Nonpoint/Point Source Copper High Acres 0198 0703 This listing is for dissolved copper in the Shelter Island yacht Basin in San Diego Bay. Nonpoint/Point Source **Sediment Toxicity** High 172 Acres 0198 0703 The listing covers the following areas: Near Sub Base 16 acres, Near Grape Street 7 acres, Downtown Piers 10 acres, Near Coronado Bridge 30 acres, Near Chollas Creek 14 acres, San Diego Naval Station 76 acres, Seventh Street Channel 9 acres, North of 24th Street Marine Terminal 10 acres. Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

		1000 07 (211 (300(a) 21017 at	1 SCHEDULE		Approved by USEPA:		12-May-99	
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR*	SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
9	С	PACIFIC OCEAN, ALISO HSA 901.13	901.13	High Coliform Count	Nonpoint/Point Source	Medium	0.01	Miles	0797	0701
9	С	PACIFIC OCEAN, BUENA VISTA HA 904.20	904.20	High Coliform Count	Nonpoint/Point Source	Low	0.02	Miles	0799	0709
9	С	PACIFIC OCEAN, CORONADO HA 910.10	910.10	High Coliform Count	Nonpoint/Point Source	Low	0.04	Miles	0799	0709
9	С	PACIFIC OCEAN, DANA POINT HSA 901.14	901.14	High Coliform Count	Nonpoint/Point Source	Low	0.06	Miles	0700	0710
9	С	PACIFIC OCEAN, ESCONDIDO CREEK HA 904.60	904.60	High Coliform Count	Nonpoint/Point Source	Low	0.02	Miles	0799	0709
9	С	PACIFIC OCEAN, LAGUNA BEACH HSA 901.12	901.12	High Coliform Count	Nonpoint/Point Source	Low	0.15	Miles	0700	0710
9	С	PACIFIC OCEAN, LOMA ALTA HSA 904.10	904.10	High Coliform Count	Nonpoint/Point Source	Low	1	Miles	0799	0709
9	С	PACIFIC OCEAN, LOWER SAN JUAN HSA	901.270	High Coliform Count	Nonpoint/Point Source	Low	0.02	Miles	0700	0710
9	С	PACIFIC OCEAN, SAN CLEMENTE HA 901.30	901.30	High Coliform Count	Nonpoint/Point Source	Low	0.15	Miles	0700	0710
9	С	PACIFIC OCEAN, SAN DIEGO HU 907.00	907.00	High Coliform Count	Nonpoint/Point Source	Low	0.5	Miles	0799	0709

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99

		1000 07 (211 (1000(a) 2101 / ti	D TWDET MOMIT			Аррготса	DY USEFA.	12-Way-99
REGION	TYPE	NAME	HYDRO UNIT	POLLUTANT/STRESSOR	* SOURCE	PRIORITY	SIZE AFFECTED	UNIT	START DATE	END DATE
9	С	PACIFIC OCEAN, SAN DIEGUITO HU 905.00	905.00	High Coliform Count	Nonpoint/Point Source	Low	0.02	Miles	0799	0709
9	С	PACIFIC OCEAN, SAN LUIS REY HU 903.00	903.00	High Coliform Count	Nonpoint/Point Source	Low	0.01	Miles	0799	0709
9	С	PACIFIC OCEAN, SAN MARCOS HA 904.50	904.50	High Coliform Count	Nonpoint/Point Source	Low	0.01	Miles	0799	0709
9	С	PACIFIC OCEAN, SCRIPPS HA 906.30	906.30	High Coliform Count	Nonpoint/Point Source	Low	0.13	Miles	0799	0709
9	С	PACIFIC OCEAN, TIJUANA HU 911.00	911.00	High Coliform Count	Nonpoint/Point Source	Low	3.2	Miles	0798	0711
9	С	SAN DIEGO BAY, LINDBERGH HSA 908.21	908.21	High Coliform Count	Nonpoint/Point Source	Low	0.2	Miles	0799	0709
9	С	SAN DIEGO BAY, TELEGRAPH HSA 909.11	909.11	High Coliform Count	Nonpoint/Point Source	Low	0.01	Miles	0799	0709
9	E	AGUA HEDIONDA LAGOON	904.310	High Coliform Count Sedimentation/Siltation	Nonpoint/Point Source Nonpoint/Point Source	Low Medium	5 5	Acres Acres	0799 0704	0709 0707
9	E	ALISO CREEK MOUTH OF ORANGE	901.130	High Coliform Count	Nonpoint/Point Source	Medium	0.3	Acres	0797	0701
9	E	BUENA VISTA LAGOON	904.210	High Coliform Count Nutrients	Nonpoint/Point Source Nonpoint/Point Source	Low Low	350 150	Acres Acres	0799 0704	0709 0707

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

1998 CALIFORNIA 303(d) LIST AND TMDL PRIORITY SCHEDULE Approved by USEPA: 12-May-99 **HYDRO** SIZE **START** END REGION TYPE NAME UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE Sedimentation/Siltation Medium 350 Acres 0704 0707 Nonpoint/Point Source 9 **FAMOSA SLOUGH & CHANNEL** 906.400 28 **Eutrophic** Medium Acres 0705 0708 **Nonpoint Source** Ε 9 **LOMA ALTA SLOUGH** 904.100 **Eutrophic** Low 8 Acres 0799 0709 **Nonpoint Source High Coliform Count** 8 0799 0709 Low Acres **Nonpoint Source** 9 LOS PENASQUITOS LAGOON 906.100 Sedimentation/Siltation Medium 385 0705 0708 Acres Nonpoint/Point Source 9 Ε **SAN ELIJO LAGOON** 904.610 Eutrophic Low 330 Acres 0799 0709 Nonpoint/Point Source **High Coliform Count** Low 150 Acres 0799 0709 Nonpoint/Point Source Sedimentation/Siltation Medium 150 Acres 0704 0707 Nonpoint/Point Source 901.200 9 Ε **SAN JUAN CREEK (MOUTH) High Coliform Count** Low 2 Acres 0700 0710 Nonpoint/Point Source SANTA MARGARITA LAGOON 902.110 9 Eutrophic High 1 Acres 0796 0705 Nonpoint/Point Source 9 Ε **TIJUANA RIVER ESTUARY** 911.110 **Eutrophic** Low 1 Acres 0798 0711 Nonpoint/Point Source **High Coliform Count** Low 150 Acres 0798 0711 Nonpoint/Point Source Lead 1 0798 0711 Low Acres Nonpoint/Point Source Nickel 1 0798 0711 Low Acres Nonpoint/Point Source

Nonpoint/Point Source

Nonpoint/Point Source

Nonpoint/Point Source

Low

Low

Low

1

1

1

Acres

Acres

Acres

0798

0798

0798

0711

0711

0711

Pesticides

Thallium

Trash

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA:

12-May-99

HYDRO SIZE **START** END NAME REGION TYPE UNIT POLLUTANT/STRESSOR* SOURCE PRIORITY **AFFECTED** UNIT DATE DATE 9 **GUAJOME LAKE** 903.110 **Eutrophic** Medium 25 Acres 0708 0711 Nonpoint/Point Source R **ALISO CREEK** 901.130 9 1 Miles 0797 0701 **High Coliform Count** Medium Nonpoint/Point Source **CHOLLAS CREEK** 908.220 9 R Cadmium High 1 Miles 0198 0703 Elevated levels in Stormwater. Nonpoint/Point Source Copper High 1 Miles 0198 0703 Elevated levels in Stormwater. Nonpoint/Point Source **High Coliform Count** 0799 0709 Low 1 Miles Nonpoint/Point Source Lead High 1 Miles 0198 0703 Elevated levels in Stormwater. Nonpoint/Point Source **Toxicity** High 1 Miles 0198 0703 Toxicity in Stormwater. Nonpoint/Point Source Zinc High 1 Miles 0198 0703 Elevated levels in Stormwater. Nonpoint/Point Source 9 R **RAINBOW CREEK** 902.200 **Eutrophic** High 5 Miles 0798 0700 Nonpoint/Point Source 9 **SAN JUAN CREEK LOWER** 901.270 **High Coliform Count** Low 1 Miles 0700 0710 Nonpoint/Point Source 9 **TECOLOTE CREEK** 906.500 Cadmium Medium 6 Miles 0705 0708 Elevated levels in Stormwater. Nonpoint/Point Source Medium 6 Miles 0705 0708 Copper Elevated levels in Stormwater. Nonpoint/Point Source **High Coliform Count** 0709 Low 6 Miles 0799 Nonpoint/Point Source Lead Medium 6 Miles 0705 0708 Elevated levels in Stormwater. Nonpoint/Point Source

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

Approved by USEPA: 12-May-99 **HYDRO** SIZE **START** END **REGION TYPE** NAME UNIT PRIORITY POLLUTANT/STRESSOR* SOURCE **AFFECTED** UNIT DATE DATE **Toxicity** Medium 6 Miles 0705 0708 Elevated levels in Stormwater. **Nonpoint/Point Source** Zinc 6 0705 0708 Medium Miles Elevated levels in Stormwater. **Nonpoint/Point Source** R **TIJUANA RIVER** 911.110 9 7 Eutrophic Low Miles 0798 0711 Nonpoint/Point Source 7 **High Coliform Count** Low Miles 0798 0711 Nonpoint/Point Source 7 0711 Org. enrichment/Low D.O. Low Miles 0798 Nonpoint/Point Source **Pesticides** 7 0798 0711 Low Miles Nonpoint/Point Source Solids Low 7 Miles 0798 0711 Nonpoint/Point Source 7 **Synthetic Organics** Low Miles 0798 0711 Nonpoint/Point Source **Trace Elements** 7 Low Miles 0798 0711 Nonpoint/Point Source 7 Trash Miles 0798 0711 Low Nonpoint/Point Source

Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.

HYDRO SIZE START END START

Approved by USEPA:

12-May-99

ABBREVIATIONS

REGIONAL WATER QUALITY CONTROL BOARDS

- 1 North Coast
- 2 San Francisco Bay
- 3 Central Coast
- 4 Los Angeles
- 5 Central Valley
- 6 Lahontan
- 7 Colorado River Basin
- 8 Santa Ana
- 9 San Diego

WATER BODY TYPE

B = BAYS AND HARBORS L = LAKES / RESERVOIRS S = SALINE LAKES

C = COASTAL SHORELINES O = OCEAN AND OPEN BAYS T = WETLANDS, TIDAL

E = ESTUARIES R = RIVERS / STREAMS W= WETLANDS, FRESHWATER

G = GROUND WATER

HYDRO UNIT

"Hydro Unit" is the State Water Resources Control Board hydrological subunit area.

START AND END DATES

Start and End Dates are shown as the year or as month/year.

"GROUP A" or "CHEM A" PESTICIDES

aldrin, dieldrin, chlordane, endrin, heptachlor, heptachlor epoxide, hexachlorocyclohexane (including lindane), endosulfan, and toxaphene

^{*} Comments presented under each pollutant/stressor are not required under Clean Water Act Section 303(d). In a few cases, they provide necessary information.